3-Variable Elimination CRAMER's RULE

$$
\begin{aligned}
& x+8 y+2 z=-12 \\
& 3 x+y+7 z=38 \\
& 4 x-3 y+6 z=47
\end{aligned}
$$

(1)

$$
\begin{array}{r}
-3 x-24 y-6 z=36 \\
3 x+y+7 z=38
\end{array}
$$

(2) $-4 x-32 y-8 z=48$
$-23 y+z=74$
(3)

$$
\begin{aligned}
& 2[-23 y+z=74] \\
&-35 y-2 z=95 \\
&-46 y+2 z=148 \\
& \frac{-35 y-2 z}{}=95 \\
& \frac{-81 y}{-81} \quad=\frac{243}{-81} \\
& y=-3
\end{aligned}
$$

(4)

$$
\begin{gathered}
-23(-3)+z=74 \\
69+z=74 \\
z=5
\end{gathered}
$$

(5)

$$
x+8(-3)+2(5)=-12
$$

$$
x+-24+10=-12
$$

$$
\begin{aligned}
x-14 \\
+14
\end{aligned}=-12
$$

$(2,-3,5)$

$$
x=2
$$

where 3 planes intersect

Elimination

1) Grove 2 equations \forall eliminate a variable.
2) Group a different pair of equations + eliminate the \qquad Variable.
3) Group the 2 resulting equations (with 2 variabbs) + eliminate a variable.
4) Sub answer in a 2-variable equation to find a and variable.
5) Sub both answers in a 3-variable equation to get Sid variable.

$$
\begin{aligned}
& \text { Cramer's Rul } \\
& 4 x+2 y-z=15 \\
& 2 x-y+5 z=9 \\
& 3 x+2 y-z=12
\end{aligned}
$$

$$
\begin{aligned}
& 4(-12-18)-2(24-27)+15(4 \div 3)
\end{aligned}
$$

$$
\begin{aligned}
& -36+34-7=-9 \\
& z=\frac{-9}{-9}=1
\end{aligned}
$$

By Calculator

$$
\operatorname{det}([E=-\bar{Z})
$$

Determinant on Calculator:

$$
\text { Menu - } 7 \text { - } 3
$$

\#18. Look at picture:

$$
\begin{aligned}
& \text { 1st equation: } x+y=1300 \\
& \text { 2nd equation: } x+2 z=1400
\end{aligned}
$$

$$
\begin{aligned}
& x=\# \text { of sofas } \\
& y=\# \text { of love seats } \\
& z=\# \text { of chairs }
\end{aligned}
$$

You figure out 3rd equation. Then set up Cramer's Rule to solve for all 3 variables. Use you calculator to work out the determinants. Enter missing variables as 0.

