\qquad

PRECALC JOURNAL
 Polynomial \& Rational Functions

1. (a) Two characteristics of the graphs of polynomials are \qquad and \qquad .
(b) Their graphs do NOT have \qquad , \qquad ,
\qquad , or \qquad .
2. (a) If the limits of the graph of a polynomial are $\lim _{x \rightarrow-\infty} f(x)=-\infty$ and $\lim _{x \rightarrow+\infty} f(x)=+\infty$, then the degree is \qquad and the leading coefficient is \qquad .
(b) If the limits of the graph of a polynomial are $\lim _{x \rightarrow-\infty} f(x)=+\infty$ and $\lim _{x \rightarrow+\infty} f(x)=+\infty$, then the degree is \qquad and the leading coefficient is \qquad .
(c) If the limits of the graph of a polynomial are $\lim _{x \rightarrow-\infty} f(x)=-\infty$ and $\lim _{x \rightarrow+\infty} f(x)=-\infty$, then the degree is (even/odd) \qquad and the leading coefficient is $(+/-)$ \qquad .
(d) If the limits of the graph of a polynomial are $\lim _{x \rightarrow-\infty} f(x)=+\infty$ and $\lim _{x \rightarrow+\infty} f(x)=-\infty$, then the degree is \qquad and the leading coefficient is \qquad .
3. Given the equation of a polynomial, the maximum number of relative extrema it can have is
\qquad while the maximum number of real roots that can occur in the graph
is \qquad .
4. (a) Write a brief series of steps for finding the roots of a third degree or higher polynomial by hand.
(b) If you were asked to solve the polynomial equation $x^{4}-8 x^{3}+4 x^{2}-17 x-32$, the possible factors you should test in Step 1 are \qquad
(c) If you were asked to solve the polynomial equation $3 x^{3}-7 x^{2}-10 x+8$, the possible factors you should test in Step 1 are \qquad
5. Before solving a rational equation, you should first identify the \qquad .
6. Write a series of steps for solving a rational inequality that is greater than or less than a number other than zero.
7. The general process for simplifying an expression like $\frac{6 x^{2}(2 x+5)^{5}\left(x^{2}-3\right)^{-2}-3 x^{3}(2 x+5)^{4}\left(x^{2}-3\right)^{-1}}{\left(x^{2}-3\right)^{2}}$ is to
\qquad . (Do NOT explain exactly how to work this problem!)
8. The two types of problems in this chapter which require you to check your answers are \qquad
\qquad .
9. (a) The purpose of decomposing a rational expression into partial fractions is \qquad
(b) When breaking a rational expression into partial fractions, what should you put in the numerator of each of the following fractions?

$$
-\frac{}{x}+-\frac{}{x^{2}}+\frac{}{x+\#}+\frac{x^{2}+\#}{}+\frac{x^{3}+\#}{}
$$

(c) If you were to break the following rational expression into partial fractions, what fractions would initially need to be set up? $\frac{x^{2}-4 x-5}{x^{3}(2 x+1)^{2}}$

