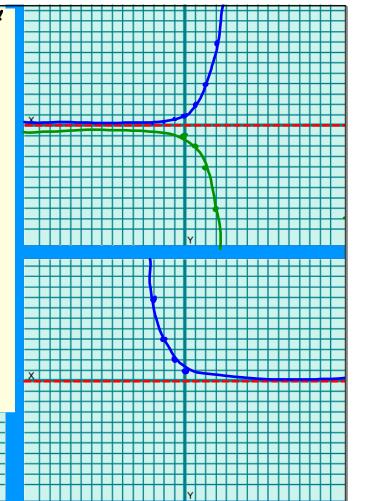
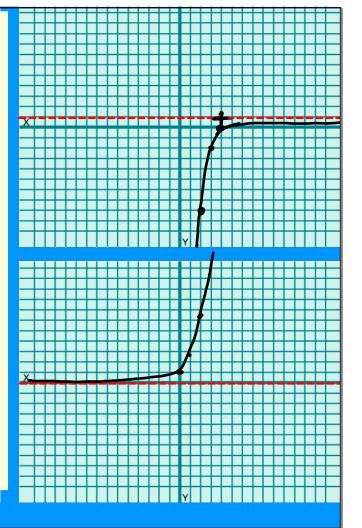
Exponential Functions $y = 4^{x}$ $y = 6^{x}$ $y = 6^{x}$ $y = 6^{x}$ Constant exponent $y = 0^{x}$ Domain: $y = 0^{x}$ Range: $(0, \infty)$ $(-\infty, \infty)$


y=2 ^x y=-2 ^x	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	24
		•

$$y = 2^{-x}$$


$$2 \times ponential - 2 + 4$$

$$decay - 3 + 8$$

$$y = \left(\frac{1}{2}\right)^{x} = 2^{-1x}$$

$$y=e^{x}$$
 $\begin{vmatrix} e'=1\\ 2 \end{vmatrix} e'=2.7$
 $e^{2}=7.4$
 $e^{2}=1$
 $e'=2.7$
 $e^{2}=7.4$
Leonard Euler
Nature Number

$$\frac{(a^{2}b^{3})(a^{-5}b^{2})^{3}}{a^{-4}b^{2}} = \frac{(a^{2}b^{3})(a^{-15}b^{6})}{a^{-4}b^{2}} = \frac{(a^{2}b^{3})(a$$

Solve.

$$\frac{1}{9}^{3x} = \sqrt[4]{27}^{3x+3}$$

$$\frac{1}{3^{2}}^{3x} = \sqrt[4]{3^{3}}^{3} \times \sqrt{3^{3}}$$

$$\frac{1}{3^{2}}^{3x} = \sqrt[4]{3^{3}}^{3} \times \sqrt{3^{3}}$$

$$\frac{3^{2}}{3^{3}}^{3x} = \sqrt[3]{9}^{3} \times \sqrt{3^{3}}$$

$$\frac{3^{-6x}}{-6x} = \frac{3^{3}x^{2} + \frac{9}{4}}{4}$$

$$\frac{3^{-6x}}{-6x} = \frac{3^{2}x^{2} + \frac{9}{4}}{4}$$

$$\frac{5x}{-6x} = \frac{3^{2}x^{2} + \frac{9}{4}}{4}$$

$$\frac{5x}{-6x} = \frac{3^{2}x^{2} + \frac{9}{4}}{4}$$

$$\frac{3^{2}}{-6x} = \frac{3^{2}x^{2} + \frac{9}{4}}{4}$$

$$\frac{3^{2}}{-3^{2}} = \frac{7^{2}x^{2}}{27}$$

$$\frac{3^{2}}{-3^{2}} = \frac{7^{2}}{-3^{2}}$$

Compound Interest

$$A = P(1+\frac{r}{n})^{nt}$$
 $e = (1+\frac{r}{n})^{n}$
 $A = Pe^{rt}$

Exponential Growth (Manuals)

 $N = N_0 (1-r)^{t}$

Continuous Growth (Notine)

 $N = N_0 e^{kt}$

Culture of Bacteria $N = N_0 e^{EE}$ K = 0.42When will there be 10,000 bacteria?

How many in 12 hours? N = 2000 = 2000 = 2000 N = 2000 N = 2000 = 2000 N = 2000