$$
\text { 61. } \left.\begin{array}{rl}
0 & =-\frac{1}{2} x^{2}-24 \\
-2 \cdot 24 & =+\frac{1}{2} x^{2} \cdot-2 \\
\sqrt{-48} & =\sqrt{x^{2}} \\
\pm 4 i \cdot 3 \\
\pm 4 \sqrt{3} & =x
\end{array}\right\} \begin{aligned}
\frac{x \sqrt{60}}{38 \sqrt{6}}
\end{aligned}=\frac{\sqrt{10}}{5}
$$

$$
\begin{array}{ll}
5 / \begin{array}{ll}
\frac{4-3 \sqrt{6}(2-\sqrt{6})}{2+\sqrt{6}}(2-\sqrt{6}) \\
= & 9-4 \sqrt{6}-6 \sqrt{6}+\frac{18}{3 \cdot 6} \\
4-6
\end{array} \quad & (2 i)^{3}(3 i)^{2} \\
& -8 i \cdot-9 i^{2} \\
= & 72 i
\end{array}
$$

$$
=\frac{-26+10 \sqrt{6}}{+2}
$$

$$
=-13+5 \sqrt{6}
$$

8

$$
\begin{aligned}
& i^{38}-2 i^{103}+i^{320} \\
& \frac{3 x}{4}=9.5 i^{3}+1 \\
& i^{2} \\
& -1-2(-i)+1 \\
& -X+2 i+X \\
& =2 i
\end{aligned}
$$

Like
3(i)

$$
\begin{gathered}
\ln 2 x+\ln (x-1)=3 \\
e^{\ln \left(2 x^{2}-2 x\right)=e^{3}} \\
2 x^{2}-2 x=e^{3} \\
2 x^{2}-2 x-e^{3}=0 \\
x
\end{gathered}=\frac{2 \pm \sqrt{4-4(2)\left(-e^{3}\right)}}{2(2)} .
$$

$$
\begin{aligned}
& 7^{x+3}=2^{3 x-1} \longleftarrow \operatorname{can} \text { use } \\
& \text { - } \ln (7)^{x+3}=\ln (2)^{3 x-1 \log x} \\
& (x+3) \ln 7=(3 x-1) \ln 2 \\
& x \ln 7+3 \ln 7=3 x \ln 2-\ln 2 \leftarrow \text { get } x \text { 's on one side } \\
& x \ln 7-3 x \ln 2=-3 \ln 7-\ln 2 \\
& x(\ln 7-3 \ln 2)=-3 \ln 7-\ln 2 \\
& x=\frac{-3 \ln 7-\ln 2}{\ln 7-3 \ln 2} \\
& x=\ldots \\
& \text { m) Factor } \\
& e^{2 x}-3 e^{x}-28=0 \\
& \left(e^{x}-7\right)\left(e^{x}+4\right)=0 \\
& \text { he } e^{x}=4 \\
& x=x-4
\end{aligned}
$$

