Square Roots

$$
\begin{aligned}
& 11^{2}=121 \\
& 12^{2}=144 \\
& \beta^{2}=169 \\
& 14^{2}=196 \\
& 15^{2}=225 \\
& 20^{2}=400
\end{aligned}
$$

$$
\begin{aligned}
& \sqrt{9}=3 \\
& \begin{aligned}
& \sqrt{28}=\sqrt{4 \cdot 7}=2 \sqrt{7} \\
& \sqrt{45}=\sqrt{9 \cdot 5}=3 \sqrt{5} \\
& \sqrt{72}=\sqrt{9 \cdot 8}=3 \sqrt{8}=3 \sqrt{4 \cdot 2}=6 \sqrt{2} \\
&=\sqrt{36 \cdot 2}=6 \sqrt{2} \\
& 2 \sqrt{3}+8 \sqrt{3}=10 \sqrt{3} \\
& 5 \sqrt{2}-3 \sqrt{7}-9 \sqrt{2}+6 \sqrt{7} \\
&=-4 \sqrt{2}+3 \sqrt{7}
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \sqrt{24}+\sqrt{54} \\
= & \sqrt{4 \cdot 6}+\sqrt{9 \cdot 6} \\
= & 2 \sqrt{6}+3 \sqrt{6} \\
= & 5 \sqrt{6}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Multiplication } \\
& \sqrt{2} \cdot \sqrt{6}=\sqrt{12} \\
& =\sqrt{4 \cdot 3} \\
& =2 \sqrt{3} \\
& \sqrt{24} \cdot \sqrt{72} \\
& =\sqrt{4 \cdot 6} \cdot \sqrt{36 \cdot 2} \\
& =2 \sqrt{6} \cdot 6 \sqrt{2} \\
& =12 \sqrt{12} \\
& =12 \sqrt{4 \cdot 3} \\
& =24 \sqrt{3} \\
& 3 \sqrt{6} \cdot 5 \sqrt{3} \\
& =15 \sqrt{18} \\
& =15_{3} \sqrt{x \cdot 2} \\
& =45 \sqrt{2} \\
& \begin{array}{l}
(3+4 \sqrt{5})(5-2 \sqrt{5}) \quad \begin{array}{l}
\text { Firsts } \\
\text { Outer }
\end{array}
\end{array} \\
& \begin{aligned}
15-6 \sqrt{5}+20 \sqrt{5}-8 \sqrt{25} & \text { Inner } \\
& -40
\end{aligned} \\
& 15-6 \sqrt{5}+20 \sqrt{5}-40 \\
& =-25+14 \sqrt{5} \\
& \sqrt{5} \cdot \sqrt{5}=\sqrt{25}=5 \\
& \begin{array}{l}
\sqrt{7} \cdot \sqrt{7}=7 \\
\sqrt{31} \cdot \sqrt{31}=31
\end{array}
\end{aligned}
$$

$$
\begin{array}{rll}
3 x^{2}+7=43 & & \sqrt{-1}=i \\
-7=7 & & \sqrt{-4}=2 i \\
\frac{3 x^{2}}{3}=\frac{36}{3} & & -1 \cdot 4 \\
\sqrt{x^{2}}=\sqrt{12} & \sqrt{x^{2}}=\sqrt{9} & \sqrt{-63}=\sqrt{-1 \cdot 9 \cdot 7}=3 i \sqrt{7} \\
x= \pm 2 \sqrt{3} & x=3 \text { or }-3 & \sqrt{-48}=\sqrt{-1 \cdot 16 \cdot 3}=4 i \sqrt{3}
\end{array}
$$

