\qquad

CALCULUS JOURNAL CURVE SKETCHING

1. The \qquad derivative determines where a graph is increasing \& decreasing while the derivative determines where a graph is concave up and down.
2. (a) Critical points are found by or by
\qquad
\qquad .
(b) Points found by the second method of (a) are called \qquad
(c) On a graph, critical points are usually located at \qquad .
(d) Points where the concavity of a graph changes are called \qquad points and are found by \qquad .
3. (a) The term relative extrema is used to describe peaks \& valleys on a graph because the points
(b) \qquad extrema are the highest and lowest points of a function.
4. How is the curve sketching process influenced by a function that has vertical asymptotes?
5. (a) Relative extrema can be located without graphing a function by using the \qquad
\qquad or \qquad
(b) The first derivative test is nicknamed \qquad .
(c) The \qquad derivative test is sometimes inconclusive if \qquad
6. (a) On a closed interval, such as $[-4,10]$, absolute extrema are found by:
1)
2) \qquad .
(b) On an open interval, such as $(2, \infty)$, absolute extrema are found by:
3) \qquad
4) \qquad
5) \qquad
7. What conclusion should be made when identifying absolute extrema on the interval $(-6,3)$ with critical points at -1 and 1 if $\lim _{x \rightarrow-6^{+}} f(x)=2, \lim _{x \rightarrow 3^{-}} f(x)=-\infty, f^{\prime}(-1)=-3$, and $f^{\prime}(1)=0$?
8. When looking at the graph of the derivative of a function, how do you identify each of the following about the original function?

Critical points \qquad
Increasing \& decreasing intervals \qquad
Relative extrema \qquad
Possible inflection points
Concave up \& down intervals \qquad
9. Important Rules, Formulas, Etc.
(a) Mean Value Theorem formula
(b) First Derivative Test steps
(d) Methods for identifying asymptotes Vertical

Horizontal

Slant (Oblique)
Curvilinear
(e) Keystrokes necessary to perform long division in CAS.

