Curve SkETaHiNG 2

$$
f(x)=\frac{x^{2}+1}{x^{2}-9} \longleftarrow-4
$$

$\left.\lim _{x \rightarrow 3} \frac{x^{2}+1}{x^{2}-9}=\frac{10}{0}= \pm=-\infty\right) \frac{\text { Horiz }}{\text { L }}$

$f^{\prime}(x)=\frac{\left(x^{2}-9\right) \cdot 2 x-\left(x^{2}+1\right) \cdot 2 x}{\left(x^{2}-9\right)^{2}}$

$0=-20 x$
$0=x$

November 10, 2023

$$
f(x)=x \cdot e^{-2 x}=\frac{x}{e^{2 x}}
$$

Vertical Horiz

$$
\begin{aligned}
& \text { None } \lim _{x \rightarrow+\infty} x \cdot e^{-2 x}=\infty \cdot 0 \\
& e^{x} \neq 0 \\
& \lim _{x \rightarrow+\infty} \frac{x}{e^{2 x}}=\lim _{x \rightarrow \infty} \frac{1}{e^{2 x} \cdot 2} \\
& \lim _{x \rightarrow-\infty} x \cdot e^{-2 x}=-\infty=0 \\
&=-\infty \\
& f^{\prime}(x)= x \cdot e^{-2 x} \cdot-2+e^{-2 x} \cdot 1 \\
& \Rightarrow= e^{-2 x}(-2 x+1) \\
& f^{-2}=\frac{1}{e^{2}} \quad-2 x+1=0 \\
& 1=2 x \\
& 1 / 2=x \\
&++- \\
&+1 / 2
\end{aligned}
$$

$$
\begin{aligned}
& \rightarrow f^{\prime \prime}(x)=e^{-2 x} \cdot-2+(-2 x+1) e^{-2 x} \cdot-2 \\
& =-2 e^{-2 x}(1-2 x+1) \\
& =-2 e^{-2 x}(2-2 x) \\
& \Rightarrow=4 e^{-2 x}(x-1) \\
& +x=1 \\
& +-1^{t}+ \\
& 012
\end{aligned}
$$

