CLLIPSES - the set of points in which
foci
 the sum of the distances from two given points is constant.

Reflective Property

Lithotripsy - disintegrate Kidney stones

- orbit of planets
- earth - ellipsoid
- whispering gallery
- telescope/microscopes mirrors

$$
\begin{array}{rlrl}
a & =\text { center to longend } \\
b & =\text { center to show side } & b^{2}+c^{2} & =a^{2} \\
c^{2} & =a^{2}-b^{2}
\end{array}
$$

$c=$ center to focus Major axis= $2 a$
a is the larger $\#!\quad$ Minor $a x i s=2 b$

$$
\frac{(x-h)^{2}}{b^{2}}+\frac{(y-k)^{2}}{a^{2}}=1
$$

For all conic sections. eccentricity $=\frac{c}{a}$

$$
\text { Foci }(h, K \pm c)
$$

$\frac{\text { Circle }}{e=0} \frac{\text { ellipse }}{0<e<1} \frac{\text { parabola }}{e=1} \frac{\text { hyperbola }}{e>1}$

$$
e=0{\underset{c}{0<e<1}}_{\substack{\text { bond flat }}} e=1 \quad e>1
$$

$$
\frac{(x+2)^{2}}{36}+\frac{(y-3)^{2}}{9}=1
$$

Center $(-2,3)$
To graph:

$$
a^{2}=36 \Rightarrow a=6
$$

plot center,

$$
b=\sqrt{9}=3
$$

$$
a,+b \text {. }
$$

Horiz (big\# is under)
Major $a x i s=2 a=2 \cdot 6=12$
Moor axis $=2 b=2.3=6$

$$
e c c .=\frac{c}{a}=\frac{3 \sqrt{3}}{6}=0.866
$$

$$
\begin{aligned}
c^{2} & =a^{2}-b^{2} \\
c^{2} & =36-9 \\
\sqrt{c^{2}} & =\sqrt{27} \\
c & = \pm 3 \sqrt{3}
\end{aligned}
$$

$$
\left.\begin{array}{l}
25 x^{2}+4 y^{2}-150 x-40 y+225=0 \\
25 x^{2}-150 x+4 y^{2}-40 y=-225 \\
25\left(x^{2}-6 x+9\right)+4\left(y^{2}-10 y+25\right)=-225 \\
\frac{225}{100}+225
\end{array}\right)
$$

