Combinatorics + Probability
How many ways an event can b performed
How many ways ace there to perform an action.
Permutations - ways to arrange objects in patterns
Combinations - ways to select groves of objects (no concern for the order of selection)

Linear Permutations

1) Arrange all object n !

$$
6!=\frac{6 \cdot 5 \cdot 4 \cdot 3 \cdot 3 \cdot 1}{720}
$$

2) Arrange a small group chosen from a larger group

$$
6543
$$

$$
\begin{aligned}
&{ }_{n} P_{r}=\frac{n!}{(n-r)!}=\frac{6!}{2!}: \\
&=\frac{6 \cdot 5 \cdot 4 \cdot 3 \cdot 21}{2!} \\
&{ }_{8} P_{3}=\frac{8!}{5!}=8.7 .6
\end{aligned}
$$

3) AliKe Objects

Mississippi

$$
\frac{11!}{4!9!2!}=34,650
$$

5 I
4) Repeated objects OR Specific locations

Draw blanks
Radio call signs

$$
\begin{aligned}
& \frac{2}{k_{w}} \cdot 26 \cdot 26 \cdot 26 \\
& =35,152
\end{aligned}
$$

Combinations - Select groups of object

$$
\begin{aligned}
{ }_{n} C_{r} & =\frac{n!}{(n-r)!r!} \\
{ }_{9} C_{2} & =\frac{9!}{7!2!} \\
& =\frac{98 \cdot 7 \cdot 6 \cdot 3 \cdot n \cdot 2 \cdot-1}{7 \cdot 6+\cdot \cdot \cdot \cdot+\cdot+2 \cdot 1} \\
& =36
\end{aligned}
$$

How many ways can a committer of 2 guys +2 gals be Chosen from a group 6 gays +5 gals?

$$
\begin{aligned}
& { }_{6} C_{2} \cdot{ }_{5} C_{2}{ }_{2 N O}={ }_{O R}=t \\
& 15 \cdot 10=150
\end{aligned}
$$

$$
\begin{aligned}
& \text { PROBe aBILITY }=\frac{\text { ways to succeed }}{\text { total }} \text { ODDS }=\frac{\text { ways } 力 \text { sucesed }}{\text { ways } 力 \text { fail }} \\
& \operatorname{Prob} \text { (Duh, tres) }=\frac{2}{6}=\frac{1}{3} \\
& \text { Odds (key Meany) }=\frac{4}{2}=\frac{2}{1} \\
& 3.100^{1} \mathrm{~s} \text { PICK } 3 . \\
& \begin{array}{l}
.2^{0^{s}} \\
65^{\prime} 5^{\prime}
\end{array} \\
& \begin{array}{l}
\text { PicK 3. } \\
\operatorname{Prob}(3 \text { rots })=\frac{{ }_{3} C_{3}}{{ }_{14} C_{3}}=\frac{1}{364}
\end{array} \\
& \text { Find pub } \quad \operatorname{Prob}\left(1100+220 \mathrm{~s}^{2}\right)=\frac{{ }_{3} C_{1} \cdot{ }_{5} C_{2}}{{ }_{14} C_{3}}=\frac{15}{182} \mathrm{smon} \\
& \text { first! } \\
& T 0 d d s=\frac{15}{182 \cdot 15} \frac{s u c}{\text { fail }} \\
& =\frac{15}{167}
\end{aligned}
$$

38 DVDs - 4 defective, Select 3.
Prob (at least one good DVD) $=$

0 Good	1 Good OR 2 bead OR 3 good				
0.07	+2 bad			bad	
			At leas		

$$
\begin{aligned}
& 1-\operatorname{Prob}\left({ }^{3} \text { bad }\right) \\
& \left.1-\frac{{ }_{3} C_{3}}{3 C_{3}}=1-\frac{1}{2109}=\frac{2108}{2109} \text { least }=1-\text { Prob(nome }\right)
\end{aligned}
$$

