Finding Relative Extrema
First Derivative Test

$$
\begin{aligned}
& f(x)=2 x^{3}-3 x^{2}-4 \\
& f^{\prime}(x)=6 x^{2}-6 x=0 \\
& \Rightarrow 6 x(x-1)=0 \\
& x=0 \quad x=1
\end{aligned}
$$

1) Find critical
2) Test pts. around Crit pts.
3) Do the Mountain Test
4) State coordinates.

Riel max @ $(0,-4)$
$\operatorname{Rel} \min @(11-5)$

2ND DERIVATIVE TEST

$$
\begin{gathered}
f(x)=x^{3}+3 x^{2}+16 \\
f^{\prime}(x)=3 x^{2}+6 x=0 \\
3 x(x+2)=0 \\
x=0,-2 \\
f^{\prime \prime}(x)=6 x+6 \\
f^{\prime \prime}(0)=0+6=6+\bigvee \\
f^{\prime \prime}(-2)=-12+6=-6-\bigcap
\end{gathered}
$$

1) Find critical point

2) Test crit pis in $f^{\prime \prime}$ for concave up/down
3) Write Solution. as word.
$\operatorname{Rel} \min _{6}(0,16)$
Rel max@ $(-2,20)$

$$
f^{\prime \prime}(\#)=0 \text { inconclusive) }
$$

$$
\begin{aligned}
& f(x)=\sqrt[3]{4-x^{2}}=\left(4-x^{2}\right)^{1 / 3} \\
& f^{\prime}(x)=\frac{1}{3}\left(4-x^{2}\right)^{-2 / 3} \cdot-2 x \\
& 0=\frac{-2 x}{3 \sqrt[3]{\left(4-x^{2}\right)^{2}}} \\
& \begin{array}{rl}
-2 x=0 & 4-x^{2}=0 \\
x & =0
\end{array} \quad 4=x^{2} \quad 4 \quad f^{\prime \prime}(x) \\
& \pm+\frac{ \pm}{t} 2=\frac{x}{t} \\
& \frac{+1+1-1 \pm}{-2,-1,2} \\
& \sqrt{x / d(0, \infty)} \\
& f(x)=2 x^{2} \ln x-11 x^{2} \\
& \operatorname{Rel} \max (0, \sqrt[3]{4})
\end{aligned}
$$

$$
\begin{aligned}
& f(x)=x^{4}+x^{3} \\
& f^{\prime}(x)=4 x^{3}+3 x^{2} \\
& x^{2}(4 x+3) \\
& x=0,-3 / 4 \\
& f^{\prime \prime}(x)=12 x^{2}+6 x \\
& f^{\prime \prime}(0)=12(0)^{2}+6(0)=0
\end{aligned}
$$

