1) Pull out common faction
2) How many terms?

2 terms $=$ look for perfect squares or cubes

$$
\begin{aligned}
& a^{2}-b^{2}=(1-b)(a+b) \\
& a^{2}+b^{2}=a^{2}+b^{2} \\
& a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right) \\
& a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right) \\
& 3 \text { terms }=\text { UNFold } \\
& 4 \text { terms }=\text { Grouping }
\end{aligned}
$$

(3)

$$
\begin{aligned}
& 16 n^{4}-1 \\
& \left(4 n^{2}+1\right)\left(4 n^{2}-1\right) \\
& \left(4 n^{2}+1\right)(2 n+1)(2 n-1) \\
& 10 w^{10}-19 w^{9}+6 w^{8} \\
& w^{8}\left(10 w^{2}-19 w+6\right)^{1} 2^{6} 3 \\
& w^{8}(\underbrace{5 w-2)(2 w}_{-18 \omega}-\underbrace{3})
\end{aligned}
$$

坚
56)

$$
\begin{aligned}
& 8 m^{3}-343 \\
& (2 \pi-7)\left(4 m^{2}+14 m+49\right)
\end{aligned}
$$

Factoring By Grouping

$$
\begin{aligned}
& \begin{array}{l}
\left(2 x^{3}-6 x^{3}(-9 x+27)\right. \\
2 x^{2}(x-3)-9(x-3)
\end{array} \underbrace{\text { quantity }}_{\text {must get same }} \\
& (x-3)\left(2 x^{2}-9\right)
\end{aligned} \underbrace{2^{\left.3 a^{3}+18 a^{2}\right)(+8 a+48)}}_{(a+6)\left(3 a^{2}+8\right)} \begin{aligned}
& 3 a^{2}(a+6)+8(a+6)
\end{aligned}
$$

