December 5, 2023

$$
\begin{aligned}
& \lim _{x \rightarrow 3} \frac{4-x}{x^{2}-9}=\frac{1}{0}=\text { DNE } \\
& \lim _{x \rightarrow 3^{-}} \frac{4-x}{x^{3}-9}=\frac{t}{-}=-\infty \\
& \lim _{x \rightarrow 3^{+}} \frac{4-x}{x^{2}-9}=\frac{t}{t}=+\infty \\
& \lim _{x \rightarrow-\infty} \frac{\sqrt{9 x^{2}-3 x+1}}{6 x-5} \\
& \lim _{x \rightarrow 0} x \cot x=0 . \infty \\
& \lim _{x \rightarrow-\infty} \frac{\sqrt[2]{4 x^{2}}}{6 x} \\
& \begin{array}{l}
\lim _{x \rightarrow-\infty} \frac{2|x|^{2}}{6 x} \\
\lim _{x \rightarrow-\infty} \frac{-2 \mid x}{6 x}=-\frac{1}{3}
\end{array} \\
& \lim _{x \rightarrow 0} x^{2 x^{2}}=0^{0} \\
& \lim _{x \rightarrow 0} e^{\ln x^{2 x^{2}}} \\
& \lim _{x \rightarrow 0} e^{2 x^{2} \cdot \ln x} \\
& \lim _{x \rightarrow 0^{+}} 2 x^{2} \cdot \ln x \\
& \lim _{x \rightarrow 0^{+}} \frac{2 \ln x}{x^{-2}}=\frac{-\infty}{\infty} \\
& \lim _{x \rightarrow 0} \frac{2 \cdot \frac{1}{x}}{-\frac{2}{x^{3}}} \\
& \lim _{x \rightarrow 0} \frac{x^{2}}{x} \cdot \frac{x^{x^{2}}}{x} \\
& =0 \\
& e^{0}=1 \\
& \begin{array}{l}
\lim _{x \rightarrow 0} \frac{2 \cdot \sin 8 x}{2 \cdot 4 x} \quad \begin{array}{l}
\frac{\cos 8 x-8}{4} \\
2 \lim _{x \rightarrow 0} \frac{\sin 8 x}{8 x} \\
2 \cdot 1=\frac{8}{4} \\
2 \cdot 2
\end{array} \\
\lim _{x \rightarrow-\infty} e^{x}=0 \quad \lim _{x \rightarrow+\infty} \ln x=-\infty \\
\lim _{x \rightarrow \infty} e^{x}=\infty \quad \lim _{x \rightarrow \infty} \operatorname{lin} x= \\
\end{array}
\end{aligned}
$$

$$
f(x)=\left\{\begin{array}{ll}
x^{3}+2 x+1 & x \leq 2 \\
5 x+3 & x>2
\end{array}\right\} a=2
$$

1) $f(2)=8+4+1=13$
2)

$$
\begin{aligned}
& \lim _{x \rightarrow 2^{-}} x^{3}+2 x+1=13 \\
& \lim _{x \rightarrow 2^{+}} 5 x+3=13 \\
& \lim _{x \rightarrow 2^{-}} f(x)=13
\end{aligned}
$$

cos $\left\{\begin{array}{l}\text { 2) } \lim _{x \rightarrow a} f(x) \text { exists } \\ \text { 3) } \\ f(a)=\lim _{x \rightarrow a} f(x) \\ \text { disk refined. } \\ \text { 4) } \\ f^{\prime}(a)^{-}=f^{\prime}(a)^{+}\end{array}\right.$
3) $f(2)=\lim _{x \rightarrow 2} f(x)$

Hos. f is continuous
4)

$$
\begin{aligned}
& f^{\prime}(2)^{-}=3 x^{-}+2=14 \\
& f^{\prime}(2)^{t}=5 \\
& f^{\prime}(2)^{-} \neq f^{\prime}(2)^{+}
\end{aligned}
$$

not diff.

Definitions of Deriv.

$$
\begin{aligned}
& \lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a} \quad \lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& f(x)=x^{2}-3 x+1 \\
& \lim _{x \rightarrow a} \frac{x^{2}-3 x+y+\left(x^{2}+3 a-x\right)}{x-a} \left\lvert\, \begin{array}{l}
\lim _{h \rightarrow 0} \frac{(x+h)^{2}-3(x+h)+1-\left(x^{2}-3 x+1\right.}{h} \\
\lim _{h \rightarrow 0} \frac{x^{2}+2 x h+h^{2}-3\left(x-3 x+\left(-x^{2}-3 x-1\right.\right.}{h} \\
\left.\lim _{x \rightarrow a} \frac{\left(x^{2}-a^{2}\right)(-3 x+3 a)}{x-a} \right\rvert\, \lim _{h \rightarrow 0} \frac{x(2 x+h-3)}{h} \\
\lim _{x \rightarrow a} \frac{x-a)(x+a)-3(x-a)}{y-a}=2 x-3 \\
=(a+a)-3 \\
=2 a-3
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d}{d x} \sin x=\cos x \quad \frac{d}{d x} \cos x=-\sin x \\
& \frac{d}{d x} \tan x=\sec ^{2} x \frac{d}{d x} \cot x=-\csc ^{2} x \\
& \frac{d}{d x} \sec x=\sec x \tan x \quad \frac{d}{d x} \csc x=-\csc x \cot x \\
& \frac{d}{d x} e^{x}=e^{x} \\
& \frac{d}{d x} \ln x=\frac{1}{x} \\
& \frac{d}{d x} a^{x}=\ln a^{\circ} a^{x} \\
& \frac{d}{d x} \sin ^{-1} x=\frac{1}{\sqrt{1-x^{2}}} \\
& \frac{d}{d x} \tan ^{-1} x=\frac{1}{x^{2}+1} \\
& \frac{d}{d x} \sec ^{-1} x=\frac{1}{|x| \sqrt{x^{2}-1}} \\
& y=(\sin x)^{x^{2}} x^{x^{2}} \\
& y=e^{\ln (\sin x)^{x^{2}}}=e^{x^{2} \cdot \ln (\sin x)} \\
& y^{\prime}=e^{x^{2} \cdot \ln (\sin x)} \cdot\left[x^{2} \cdot \frac{1}{\sin x} \cdot \cos x+\ln (\sin x) \cdot 2 x\right] \\
& =(\sin x)^{x^{2}} \cdot\left[x^{2} \cot x+2 x \ln (\sin x)\right] \\
& \begin{array}{l}
=x(\sin x)^{x^{2}}[x \cot x+2 \ln (\sin x)] \\
f(x)=\csc ^{-1}\left(\sqrt{x^{2}-1}\right) \quad \frac{-1}{1 x\left(\sqrt{x^{2}-1}\right.}
\end{array} \\
& f^{\prime}(x)=\frac{-1}{\mid \sqrt{x^{2}-1 \mid \sqrt{\left(\sqrt{x^{2}-1}\right)^{2}-1}}-1} \cdot \frac{1}{2 x}\left(x^{2}-1\right)^{-1 / 2} \cdot 2 x \\
& =\frac{-1}{\sqrt{x^{2}-1} \sqrt{x^{2}-2}} \cdot \frac{x}{\sqrt{x^{2}-1}} \\
& =\frac{-x}{\left(x^{2}-1\right) \sqrt{x^{2}-2}}
\end{aligned}
$$

