Semester Review Day 3

$$
\begin{aligned}
& 17 \frac{\frac{5 i m p l i f y}{4(2 x-5)^{3}\left(3 x^{2}+1\right)^{-2 / 3}-6(2 x-5)^{2}\left(3 x^{2}+1\right)^{1 / 3}}}{\left(3 x^{2}+1\right)^{1 / 3}} \\
& \left.\frac{2(2 x-5)^{2} \cdot\left(3-2 x^{2}+1\right)^{-2 / 3}\left[2(2 x-5)-3\left(3 x^{2}+1\right)^{1}\right]}{\left(3 x^{2}+1\right)^{1 / 3}+2 / 3}\right] \\
& \\
& \frac{2(2 x-5)^{2}\left[4 x-10-9 x^{2}-3\right]}{3 x^{2}+1} \\
&
\end{aligned}
$$

$$
\begin{aligned}
& \lg _{8} e^{7}=7 \\
& \log _{3} 9=\log _{3} 3^{2}=2 \\
& \log _{8} \sqrt[3]{64}=\log _{8} \sqrt[3]{8^{2}}=\log _{8} 8^{2 / 3}=2 / 3 \\
& \log _{9} \frac{1}{81}=\log _{9} \frac{1}{9^{2}}=\log _{9} 9^{-2}=-2
\end{aligned}
$$

Proparties of Lops
$\log _{b} m+\log _{b} n=\log _{b}(m n)$
$\log _{b} m-\log _{b} n=\log _{b}\left(\frac{m}{n}\right)$
$\log _{b} m^{p}=p \log _{b} m$
$e^{\ln (3 x+7)}=e_{4}^{4}$

$$
3 x+7=e^{4}
$$

$$
\frac{3 x}{3}=\frac{e^{4}-7}{3}
$$

$$
x=15.97
$$

lik
f)

$$
\begin{aligned}
& \ln (x+3)+\ln (2 x)=5 \\
& e^{\ln \left(2 x^{2}+6 x\right)=e^{5}} \\
& 2 x^{2}+6 x=e^{5} \\
& 2 x^{2}+6 x-e^{5}=0 \\
& x=\frac{-6 \pm \sqrt{36-4(6)\left(-e^{5}\right)}}{2(2)} \\
& =-\frac{-6 \pm \sqrt{36+8 e^{5}}}{4} \\
& x=7.24 \\
& =-10
\end{aligned}
$$

Commor,
bases!
Exponentiate!

$$
\frac{1}{3}^{\log _{4} \sqrt[5]{27}}=\frac{1}{3}^{x}
$$

$\sqrt[5]{27}=\frac{1}{3}^{x}$

$$
\sqrt[5]{3^{3}}=3^{-1 x}
$$

$$
3^{3 / 5}=3^{-x}
$$

$$
\frac{3}{5}=-x
$$

$$
-3 / 5=x
$$

Like h

$$
\begin{aligned}
& e^{2 x}-3 e^{x}-10=0 \\
& \left(e^{x}-5\right)\left(e^{x}+2\right)=0 \\
& e^{x}-5=0 e^{x}+2=0 \\
& \ln e^{x} \quad \ln ^{5} x e^{x}=\ln ^{2} \\
& x=\ln 5 x=\ln \left(\frac{2}{2}\right)
\end{aligned}
$$

Applications of Logs
A farmer purchases a new combine for ${ }^{\circ} 500$, nov. It value decrees at 15% per year. When will its value have dropped to $s 200,000$?

$$
\begin{aligned}
& N=N_{0}(1 \pm r)^{t} \\
& \frac{200,000}{500,000}=\frac{500,000(1-0.15)^{t}}{500,000} \\
& 0.4=0.85^{t} \\
& \ln (0.4)=\ln (0.85)^{t} \\
& \frac{\ln (0.4)}{\ln (0.85)}=\frac{t \cdot \ln (0.85)}{-\ln (0.75)} \\
& \frac{5.6}{} \text { yrs }=t
\end{aligned}
$$

S. Der. $\{2,7,10,13\}$

1) Find mean. $-c^{2}+k_{1}^{1+22^{2}+5^{2}}$
2) Duta-mean $=\sqrt{\frac{86}{4}}$
3) Square difference $=$ tob
4) Find mean of squares
5) $\sqrt{ }$

Outliers $I Q R=Q_{3}-Q_{1}$

$$
\begin{aligned}
& \text { IR * } 15=\# \\
& \text { Loge } \text { mornay }=Q_{1}-\# \text {. } \\
& \text { Uperer monday }=Q_{3}+\#
\end{aligned}
$$

population data - Normal Distribution $z=\frac{x-\mu}{\sigma} \longleftarrow$ cannot be used for samples!
The number of text massages sent by 800 tens at Chaparral HS is normally distributed with a mean if $38+a$ st. div of 7 . How many teens sind between $45+50$ texts per day?

$$
\begin{aligned}
& z=\frac{45-38}{7}=1.00 \quad .3413 \\
& z=\frac{50-38}{7}=\frac{12}{7}=1.71 \frac{.4564}{0.1151} \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \hline 92.1
\end{aligned}
$$

What number of text messages is the cutoff line for the lowest 25% ?

Confidence Intervals - For SAMPLES

$$
\begin{aligned}
& \sigma_{\bar{x}}=\frac{s}{\sqrt{n}} \\
& E=z \cdot \sigma_{\bar{x}} \\
& \bar{x} \pm E
\end{aligned}
$$

A sample of 64 families in an upper doss area of L.A. found the moan amount spent for Christmas gifts per family member was $\$ 8000$. W th a $s t$. dove of $\$ 1000$. Find a 90% conf. interval.

$$
\begin{aligned}
& \sigma_{\bar{x}}=\frac{s}{\sqrt{n}}=\frac{1000}{\sqrt{64}}=125 \\
& E=z \cdot \sigma_{\bar{x}} \\
& E=1.65 \cdot 125 \\
& E=206.25 \\
& 8000 \pm 206.25 \\
& \$ 7793.75-8206.25
\end{aligned}
$$

Probableity

