APPLICATIONS OF EXPONENTIAL \& LOGARITHMIC FUNCTIONS

Compound Interest

$A=P\left(1+\frac{r}{n}\right)^{n t}$
Compounded continuously

$$
A=P e^{r t}
$$

$A=$ final amount
$P=$ principal
$r=$ interest rate
$n=$ number of times compounded in a year
$t=$ time

Exponential Growth/Decay (Business/Human Pop.)
$N=N_{0}(1 \pm r)^{t}$
$N=$ final amount
$N_{0}=$ initial amount
$r=$ growth/decay rate
$t=$ time

Continuous Growth (Nature)
$q=q_{0} e^{k t}$
$q=$ final amount
$q_{0}=$ initial amount
$k=$ constant of growth/decay
$t=$ time

ALGEBRA 2 FORMULAS

APPLICATIONS OF EXPONENTIAL \& LOGARITHMIC FUNCTIONS

Compound Interest

$$
A=P\left(1+\frac{r}{n}\right)^{n t}
$$

Compounded continuously

$$
A=P e^{r t}
$$

$A=$ final amount
$P=$ principal
$r=$ interest rate
$n=$ number of times compounded in a year $t=$ time

Exponential Growth/Decay (Business/Human Pop.)
$N=N_{0}(1 \pm r)^{t}$
$N=$ final amount
$N_{0}=$ initial amount
$r=$ growth/decay rate
$t=$ time

Continuous Growth (Nature)

$$
q=q_{0} e^{k t}
$$

$$
q=\text { final amount }
$$

$$
q_{0}=\text { initial amount }
$$

$k=$ constant of growth/decay
$t=$ time

