ALGEBRA 2 FORMULAS APPLICATIONS OF EXPONENTIAL & LOGARITHMIC FUNCTIONS

Compound Interest

$$A = P\left(1 + \frac{r}{n}\right)^{nt}$$

$$A = final amount$$

$$P = principal$$

$$r = interest rate$$

$$n = number of times compounded in a year$$

$$t = time$$

Exponenti	al Growt	th/Decay	(Business/Human	Pop.)
-			•	- ·

$$N = N_0 \left(1 \pm r\right)^t$$

N =final amount $N_0 =$ initial amount r =growth/decay rate t =time <u>Continuous Growth</u> (Nature) $q = q_0 e^{kt}$ q = final amount $q_0 = \text{initial amount}$ k = constant of growth/decay

t = time

ALGEBRA 2 FORMULAS APPLICATIONS OF EXPONENTIAL & LOGARITHMIC FUNCTIONS

Compound Interest

$$A = P\left(1 + \frac{r}{n}\right)^{nt}$$

Compounded continuously $A = Pe^{rt}$

- A = final amount P = principal r = interest rate n = number of times compounded in a yeart = time
- **Exponential Growth/Decay** (Business/Human Pop.) $N = N_0 (1 \pm r)^t$

N =final amount $N_0 =$ initial amount r =growth/decay rate t =time <u>Continuous Growth</u> (Nature) $q = q_0 e^{kt}$ q = final amount $q_0 = \text{initial amount}$ k = constant of growth/decayt = time