EXPONENTS \& PROTS Varticellentot
InTERS Functions

Function - Is a set of ordered in which each x-coordinate is paired with EXACTLY ONE y-coordinate.
Inverse functions y No $f=\{(2,3)(-5,8)(2, i)(-1, i)\}$
$f=\{(x, y)\} \quad f^{-1}=(y, x)$

$$
f=\{(3,2)(-7,5)(4,-11)\}
$$

$$
f^{-1}=\{(2,3)(5,-7)(-11,4)\}
$$

Squrabola

Horizontal line toot $=$ If the original f passes the hoot. line test, the f^{-1} will be a function.

Find eq. of inverse.
$f(x)=4 x-7$

1) Switch $x \not x y$ variables.
2) Solve for y.

$$
y=4 x-7
$$

1) $x=4 y-7$
2) $\frac{x+7}{4}=\frac{y y}{4}$

$$
\frac{x+7}{4}=f^{-1}
$$

$$
\begin{aligned}
& f^{y}(x)=\sqrt[3]{2 x+7} \\
& \left.(x)^{3}=\sqrt[3]{2 y+7}\right)^{3} \\
& x^{3}=2 y+7 \\
& \frac{x^{3}-7}{}=\frac{2 y}{2} \\
& \frac{x^{3}-7}{2}=f^{-1}
\end{aligned}
$$

Given $f(x)=\sqrt{2 x-5} \quad g(x)=\frac{x^{2}+5}{2}$
Are $f+g$ inverse functions?
If $f \circ g$ or $g \circ f=x$, then $f+g$ are inverses.

$$
\begin{aligned}
g \circ f & =\frac{(\sqrt{2 x-5})^{2}+5}{2} \\
& =\frac{2 x-8^{\prime}+8}{2} \\
& =\frac{2 x}{2} \\
& =x
\end{aligned}
$$

$f+g$ are inverses.

$$
\begin{aligned}
& \text { RuLE \#S: } a^{0}=1 \\
& \frac{f^{7}}{f^{7}}=f^{0}=1 \\
& 2\left(x y^{3}\right)^{2}+5^{0} \\
& =2(1)+1 \\
& =2+1 \\
& =(3)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\left(2^{1} a^{7} b^{3} c^{-2}\right)^{3} \cdot\left(2 a^{1-1} b^{-1} c^{5}\right)^{-2}}{\left(2 a^{-1} b^{11} c^{-5}\right)^{2}\left(2 a^{4} \frac{1}{1} c^{13}\right)^{104}} \\
& \frac{\left(2^{3} a^{21} b^{9} c^{-6}\right)\left(2^{-2} a^{8} b^{2} c^{-10}\right)}{2^{2} a^{-14} b^{22} c^{-10}} \\
& \frac{2^{2} a^{29+1} \|^{x} e^{-16}}{2^{2-1} a^{-41} b^{22-1} c^{-10+16}} \\
& =\frac{a^{43}}{2^{11} b^{11} c^{6}}
\end{aligned}
$$

Scientific Notation

$$
\begin{aligned}
& 243,000,000 \quad 2.43 \times 10^{8} \\
& 0.0792 \quad 7.92 \times 10^{-2} \\
& 5.63 \times 10^{-4} 0.000563 \\
& \left(2.3 \times 10^{6}\right)\left(4.7 \times 10^{3}\right) \\
& 2.3 a^{6} \quad 4.7 a^{3} \\
& =10.81 \times 10^{9} \\
& =1.081 \times 10^{10} \\
& \frac{1.7 \times 10^{5-12}}{3.4 \times 10^{12}} \\
& \begin{array}{l}
0.5 \times 10^{-7-1} \\
5 \times 10^{-8}
\end{array}
\end{aligned}
$$

