\qquad

ALGEBRA II JOURNAL

Exponential \& Logarithmic Functions

1. An exponential function has a constant \qquad and a variable \qquad .
2. An example of an equation which represents exponential growth is \qquad while exponential decay can be represented by equations in the form \qquad and
\qquad -.
3. (a) e is called the \qquad number because \qquad .
(b) e was discovered by \qquad .
(c) The value of e to 6 decimal places is \qquad .
4. The relationship between exponential and logarithmic functions is that \qquad
\qquad
5. Logarithms represent \qquad .
6. Provide the following information for the graphs of each of the following functions.

$$
y=8^{x} \quad y=\log _{8} x
$$

(a) Location of the asymptote
(b) Coordinate that appears in every exp/log function
\qquad
(c) Change each equation above to make it shift right and down
(d) Change each equation above to make it reflect over the x-axis. \qquad
(e) Change each equation above to make it reflect over the y-axis. \qquad
7. The two special types of logarithms are \qquad logarithms which have base \qquad and
\qquad logarithms which have base \qquad .
8. The steps for solving an equation containing one or more logs are:

1) \qquad
2) \qquad
9. The purpose of logarithms in mathematics and the real world is to solve for \qquad .
10. To solve a problem like $25^{x+3}=125^{2 x-1}$ you would \qquad while you would solve a problem like $11^{x}=219$ by \qquad
11. (a) After setting up the equation for a real world application problem in which you need to solve for the exponent, the first thing you must do to begin solving the problem is \qquad
\qquad .
(b) The second step is to move \qquad using:
\qquad logs (if the base is a constant) OR \qquad logs (if the problem has base e).
12. List the following rules, facts, or formulas.
a) Three properties of logarithms
b) List four specific examples of how exponential and/or logarithmic functions may be used in the real world. (Example: "Determine the number of ..."
13.
14.
15.
16.

c) Graph $y=2^{x}$ and $y=\log _{2} x$. Show the T-table of values used to create each graph.
d) Attach the formula sheet for the real-world application problems.

