APPLICATIONS OF LOGARITHMS
Great grandpa Sedley left a box buried in your backyard 4 containing $\$ 25,000$. If you invest it. at 4% compounded monthly, will you be a millionaire in your lifetime?

$$
\begin{aligned}
& A=P\left(1+\frac{r}{n}\right)^{n t} \\
& 1,000,000=25,000\left(1+\frac{0.04}{12}\right)^{12 t} \\
& \frac{1,000,000}{25,000}=\frac{2,5000 \cdot(1.0033}{12 t} \\
& 40=1.0033^{12 t, 000} \\
& \log 40=\log 1.0033^{12 t} \\
& \frac{\log 40}{}=\frac{+2 \cdot t \cdot \log (10033)}{\log \cdot \log (1.033)}+\operatorname{tog}(1.0033) \\
& 93.3_{y r s}=t
\end{aligned}
$$

1) Divide initial amt to opposite side
2) Ald loq s to both sides
3) Slog exponent to for nt
4) Solve

CAR - $\$ 19,500$ 15\% depreciation
Trade it in when value of $\$ 10,000$. How many years will you drive the car?

$$
\begin{gathered}
N=N_{0}(1-r)^{t} \\
\frac{10,000}{19500}=\frac{19500(1-0.15)^{t}}{19500} \\
\frac{20}{39}=(0.85)^{t} \\
\log \left(\frac{20}{39}\right)=\frac{t \cdot \log (0.85)}{\log (0.85)} \\
4.1 \mathrm{log}(0.85)
\end{gathered}
$$

Carbon-14, a radioactive isotope, is used to find the age of fossils. A piece of parchment from an ancient scroll is found to have 62.5% of its Carbon-ly left. How old is the scroll? The constant of decay of Carbon-14 is -0.000121 .

$$
\begin{aligned}
q & =q_{0} e^{k t} \\
\frac{0.625}{1} & =\frac{1 e^{-0.000121 t}}{x} \\
\ln (0.625) & =\ln \left(e^{-0.000121 t)}\right. \\
\frac{\ln (0.625)}{-0.000121} & =\frac{-0.000121 t}{-0.0010121} \\
3884 y y_{s s} & =t
\end{aligned}
$$

Exponential Regression

Logarithme Regression

$$
y=a \ln b
$$

LnRegr Not logistic

Power Regression

$$
\begin{aligned}
y= & a x^{b} \\
& x_{1}^{2} x^{3}, x^{1 / 2}, x^{2 / 3}
\end{aligned}
$$

1) Balanced pts. on each side of curve
2) r^{2}
3) How does it prodid future?

Go to Table Ctrl-T
Know y-coord When 25 ft tall $f_{1}+$ press enter (Torn on eg.)

$$
f_{2}=2 s
$$

Zoom out + intersect.

