Dovble + Nalf Awale loentios

$$
\left.\begin{array}{rl}
\cos 2 A=\cos (A+A) & =\cos A \cos A-\sin A \sin A \\
\cos 2 A & =\cos ^{2} A-\sin ^{2} A \\
& =1-2 \sin ^{2} A \\
& =2 \cos ^{2} A-1
\end{array}\right]
$$

$$
\begin{aligned}
& \sin 2 A=2 \sin A \cos A \\
& \tan 2 A=\frac{2 \tan A}{1-\tan ^{2} A}
\end{aligned}
$$

$$
\begin{array}{rlr}
\cos \frac{1, B}{B}=2 \cos ^{2} \frac{A}{B}-1 & \cos \left(\frac{B}{2}\right) & = \pm \sqrt{\frac{1+\cos B}{2}} \\
\cos B=2 \cos ^{2}\left(\frac{B}{2}\right)-1 & \sin \left(\frac{B}{2}\right) & \pm \sqrt{\frac{1-\cos B}{2}} \\
\sqrt{\frac{\cos B+1}{2}}=\sqrt{\cos ^{2}(B) 2} \\
\pm \sqrt{2} & \tan \left(\frac{B}{2}\right) & =\sqrt{\frac{1-\cos B}{1+\cos B}} \\
& =\cos \left(\frac{B}{2}\right. & \\
& =\frac{\sin B}{1+\cos B} x^{k}
\end{array}
$$

$$
\begin{aligned}
& \text { Tor } F \\
& \cos 50^{\circ}=1-2 \sin ^{2} 25 \\
& \sin 42^{\circ}=2 \sin 84^{\circ} \cos 84^{\circ} \\
& =\cos \left(2.25^{\circ}\right) \\
& =\cos 50^{\circ} \quad F=\sin 168^{\circ}
\end{aligned}
$$

Evaluate.

$$
\begin{align*}
& \text { aluate. } \tag{3}\\
& \begin{aligned}
\frac{2 \tan 75^{\circ}}{1-\tan ^{2} 75^{\circ}}=\tan (2.75) & =\tan 150^{\circ} \\
& =-\frac{\sqrt{3}}{3}
\end{aligned}
\end{align*}
$$

FF

$$
\begin{aligned}
\cos 130^{\circ} & =\sqrt{\frac{1-\cos 260^{\circ}}{2}} \left\lvert\, \cos 194^{\circ}=\sqrt{\frac{1+\cos 346^{\circ}}{2}}\right. \\
= & \sin \left(\frac{260^{\circ}}{2}\right) \\
& \cos \left(\frac{366^{\circ}}{2}\right) \\
& \operatorname{False} \cos 194^{\circ}
\end{aligned}
$$

Evaluate

$$
\begin{aligned}
\frac{1-\cos 480^{\circ}}{\sin 450^{\circ}}=\tan \left(\frac{458^{\circ}}{2}\right) & =\tan 225^{\circ} \\
& =+1 \text { 4. } 1
\end{aligned}
$$

Find $\cos 2 A$ giren $\csc A=\frac{-7 r}{3}+\frac{3 \pi}{2}<A<2 \pi$

$$
\begin{aligned}
\cos 2 A & =1-2 \sin ^{2} A \\
& =1-2\left(\frac{y}{r}\right)^{2} \\
& =1-2\left(\frac{-3}{7}\right)^{2} \\
& =1-2\left(\frac{9}{49}\right) \\
& =1-\frac{18}{49} \\
& =\frac{49}{49}-\frac{18}{49}=\frac{31}{49}
\end{aligned}
$$

$$
4 \overline{9}
$$

Find $\cos \frac{A}{2}$ given $\sin A=-\frac{1}{2} \frac{y}{r}+A$ in $Q \mathbb{L}$

$$
\begin{aligned}
& \cos \frac{A}{2}= \pm \sqrt{\frac{1+\cos A}{2}} \\
& =\sqrt{\frac{1+\frac{\sqrt{3}}{2}}{2}} \\
& -\sqrt{2} \\
& x^{2}+(4)^{2}=z^{2} \\
& x^{2}+1=4 \\
& \sqrt{x^{2}}=\sqrt{3} \\
& 180^{\circ}<A<270^{\circ} \\
& =\sqrt{\frac{\frac{2-\sqrt{3}}{2}}{2} \cdot \frac{1}{2}} \\
& 90^{\circ}<\frac{4}{2}<135^{\circ} \text { 臬 } \\
& =-\sqrt{\frac{2-\sqrt{3}}{4}} \\
& =\frac{-\sqrt{2-\sqrt{3}}}{2}
\end{aligned}
$$

$$
\frac{\sin 2 x}{1-\cos 2 x}=\cot x
$$

$$
\frac{2 \sin x \cos x}{1+\left(x+2 \sin ^{2} x\right)}=\frac{\cos x}{\sin x}
$$

1) Select the identity thet makes "I's" cance I
2) Look at the o pposite sido

$$
\begin{aligned}
& \frac{2 \sin x \cos x}{2 \sin x} \\
& \frac{\cos x}{\sin x}=\frac{\cos x}{\sin x}
\end{aligned}
$$

\square

