Aprlications of Ratiowal Fricte

$$
\begin{aligned}
& \text { DRT }
\end{aligned}
$$

$$
\begin{aligned}
& x=\text { spect of } \\
& T=\frac{P}{R}(15+x)\left[\frac{140}{15+x}=\frac{35}{15-x}\right](15+x) x \neq \pm 15 \\
& 140(15-x)=35(15+x) \\
& \operatorname{cic}_{-525}^{100-140 x}=525+35 x \\
& \frac{1575}{175}=\frac{175 x}{175} \\
& 9 \frac{\mathrm{~km}}{\mathrm{~m}}=x
\end{aligned}
$$

$D \div R=T$

140	$15+x$	$\frac{140}{15+x}$
140	$15-x$	$\frac{140}{15-x}$

Total trip took 4 hours.

$$
\frac{140}{15+x}+\frac{140}{15-x}=4
$$

The time to go upstream was $\frac{3}{4}$ of hour more than the time to go downstream.

$$
\left.\left.\begin{array}{rl}
\text { More }- \text { Less } & =\frac{3}{4} \\
\substack{\text { Time } \\
(15-x) \\
(15+x)}
\end{array}\right] \frac{140}{15-x}-\frac{140}{15+x}=\frac{3}{4}\right]
$$

$$
\begin{aligned}
& x \neq 0,-9 \\
& 270(x+9)-270 x=x(x+9) \\
& 270 x+2430-270 x=x^{2}+9 x \\
& 0=x^{2}+9 x-2430 \\
& x=\frac{-9 \pm \sqrt{81+4(1)(+2430)}}{2(1)} \\
& =\frac{-9 \pm \sqrt{9801}}{2} \\
& \begin{array}{l}
\text { Wm } \\
\begin{array}{l}
\text { Price } \\
\text { \# of people }
\end{array} \quad=-\frac{9 \pm 99}{2} \quad \frac{90}{2}=45 \mathrm{mph} \\
-\frac{101}{2}=54
\end{array}
\end{aligned}
$$

保

