\qquad

TRIGONOMETRY JOURNAL GRAPHING TRIG FUNCTIONS

1. Trig functions are called periodic functions because \qquad
2. (a) The amplitude of a wave is the distance from the \qquad to \qquad while the period is the length of \qquad of the wave.
(b) The trig functions \qquad have amplitude while the trig functions do NOT have amplitude because \qquad
3. (a) The normal period of $\sin x, \cos x, \sec x, \& \csc x$ is \qquad while the normal period of $\tan x$ and $\cot x$ is \qquad .
4. (a) The graph of sine starts \qquad and moves in a(n) \qquad direction.
(b) The graph of cosine starts \qquad and moves in a(n) \qquad direction.
5. (a) A $-a$ causes the graph of cosine to \qquad .
(b) A $-a$ causes the graph of tangent to \qquad .
(c) A $-a$ causes the graph of sine to \qquad .
6. Horizontal shift is called \qquad shift when working with waves.
7. List the steps for finding the 5 major points on the x-axis which are used to plot all of the trig functions except tangent. Assume you have already determined the phase shift and period of the graph. 1. \qquad 2. \qquad
8. What is different about how you find those 5 points for tangent? \qquad
9. When a phase shift is present, the graph of tangent shifts its \qquad while the graph of cotangent shifts its \qquad .
10. a) Add a number to the equation of $f(x)=\sin x$ to make the waves longer. \qquad
b) Add a number to the equation of $f(x)=\cos x$ to make the waves occur rapidly. \qquad
11. (a) Assume that you have determined that $b=\frac{1}{2}$, give two examples of how the equation $y=\tan \left(x+\frac{\pi}{4}\right)$ can correctly be written. \qquad
(b) Given the graph of a trig function, the value of b is found by first determining the \qquad of the graph and then calculating $b=\square$ for $\sin x, \cos x, \sec x, \& \csc x$ or $b=$ \qquad for $\tan x \& \cot x$.
12. Two real world applications of the graphs of trig functions are \qquad
\qquad -
13. List the following formulas and operations.
a) Show how to identify each of the following using the equation $y=a$ \qquad $(b x+c)+d$ where the blank is filled in by one of the trig functions at the top of the chart.

	\sin or cos	sec or csc	\tan or cot
Amplitude			
Period			
Phase Shift			
Vertical Shift			

b) Sketch two periods of the graph of each of the 6 trig functions.

14. Given the graph of $y=2 \sin \frac{3}{4}\left(x-\frac{\pi}{3}\right)$ below, write 3 additional equations that would result in the same graph. You may consider it to be a graph of $\sin x$ or $\cos x$.

1) \qquad
2) \qquad
3) \qquad
