Lengitiof Cuave + Surface Area

Distane Formuln

$$
d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

$$
\begin{aligned}
& \lim _{x \rightarrow x_{1}} \sum_{x_{0} a}^{b} \frac{\sqrt{\left(x-x_{1}\right)^{2}}+\frac{(f(x)-f(x))^{2}}{\left(x-x_{1}\right)^{2}}}{\left(x-x_{1}\right)^{2}} \\
&=\int_{a}^{1} \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x
\end{aligned}
$$

$$
\begin{aligned}
& f(x)=\frac{2}{3}(x-1)^{3 / 2} \quad[1,4] \\
& f^{\prime}(x)=1(x-1)^{1 / 2} \\
& \int_{1}^{4} \sqrt{1+\left[(x-1)^{1 / 2}\right]^{2}} d x \\
& \int_{1}^{4} \sqrt{17 x y^{\prime}} d x \\
& \int_{1}^{4} x^{1 / 2} d x \\
& \left.\frac{2 x^{3 / 2}}{3}\right|_{1} ^{4}=\frac{2}{3}[8-1]=\frac{2}{3} \cdot 7=\frac{14}{3} \text { units }
\end{aligned}
$$

Surface Area of a solid of

Find surface area.

$$
\begin{aligned}
& f(x)=\sqrt{1-x^{2}}[0,1 / 2] \\
& f^{\prime}(x)=\frac{1}{2}\left(1-x^{2}\right)^{-1 / 2} \cdot-2 x=\frac{-x}{\sqrt{1-x^{2}}} \\
& 2 \pi \int_{0}^{1 / 2} \sqrt{1-x^{2}} \cdot \sqrt{1+\left[\frac{-x}{\sqrt{1-x^{2}}}\right]^{2} d x}
\end{aligned}
$$

Revolution
$2 \pi r d s$

$$
\begin{aligned}
& 2 \pi \int_{r} r \sqrt{1+\left[f^{\prime}(x)\right]_{d}^{2}} \\
& 2 \pi \int_{a}^{b} f(x) \sqrt{1+\left[\left[^{\prime}(x)\right]^{2}\right.} \\
& \begin{array}{l}
y=(3 x)^{1 / 3} \\
0 \leq x \leq 8 / 3
\end{array}
\end{aligned}
$$

around y-axis

1) Change to $x=y$'s 2) Chang limits to y-cord.
