Log Dpgra tions

$$
\log _{10} 10^{1}=7 \quad \ln _{2} e^{(01)}=101
$$

$$
6^{\log _{3} 39}=39
$$

Solve. $\log _{5} x=4$
EXPONENTIATE!

$$
\begin{array}{rlrl}
\begin{array}{ll}
t>0,6 \neq 1 & 5^{\operatorname{lom}_{3} x}
\end{array}=5^{4} \\
x>0 & x & =625
\end{array}
$$

$$
\begin{aligned}
\log _{x} 64 & =2 \\
x^{\operatorname{lox}_{2} 64} & =x^{2} \\
\sqrt{64} & =\sqrt{x^{2}} \\
\times 8 & =x
\end{aligned}
$$

$$
\log _{25} \sqrt[4]{5}=x
$$

$$
25^{\operatorname{lox}_{4} \sqrt[4]{5}}=25^{x}
$$

PROPERTIES OF LOGS

$$
\log _{b} m+\log _{b} n=\log _{b}(m \cdot n)
$$

$$
\log _{b} m-\log _{b} n=\log _{b}\left(\frac{m}{n}\right)
$$

$$
\log _{b} m^{p}=p \cdot \log _{b} m
$$

$$
\log _{7} 7^{5}=5 \cdot \log _{7} 7^{1}
$$

$$
5=5 \cdot 1
$$

$$
\log _{7}(x+5)+\log _{7}(x-3)=2 \log _{7} 3
$$

$$
\log _{7}((x+5)(x-3))=\log _{7} 3^{2}
$$

$$
\log _{7}\left(x^{2}+2 x-15\right)=\log _{77} 9
$$

$$
\begin{gathered}
7^{\log _{7}\left(x^{2}+2 x-15\right)}=7^{\log _{7} 9} \\
x^{2}+2 x-15=9 \\
x^{2}+2 x-24=0 \\
(x+6)(x-4)=0 \\
x=-6 x=4
\end{gathered}
$$

$$
\ln 4 x+\ln 3-\ln 6=4
$$

$$
\begin{aligned}
& \ln \left(\frac{4 x \cdot 3}{6}\right)=4 \\
& \ln 2 x=4
\end{aligned}
$$

$$
\begin{aligned}
\frac{2 x}{2} & =\frac{e^{4}}{2} \\
x & =27.30
\end{aligned}
$$

Steps:

1) Use properties to reduce each side to a single term or log.
2) Exponentiate both sides and solve for x .

$$
\begin{array}{rlrl}
8^{x} & =117 & \frac{7 e^{3 x+5}}{7} & =\frac{14}{7} \\
\log ^{x} \downarrow & =\log 117 & e^{3 x+5} & =2 \\
\frac{\log \cdot \log (8)}{\log (8)} & =\frac{\log (117)}{\log (8)} & \ln \left(e^{3 x-5}\right) & =\ln 2 \\
x & \approx 2.29 & 3 x+5 & =\ln (2) \\
& \frac{3 x}{3} & =\frac{\ln (2)-5}{33} \\
x & \approx-1.4 t^{3}
\end{array}
$$

