Identities Review
Sum + Product Identities
Purpose - to switch between wdition/subtraction of trig fractions to multiplication of trig functions (or vice versa)

$$
\begin{aligned}
& \sin 40^{\circ}-\sin 100^{\circ}=(4) 2 \cos 70^{\circ} \sin 30^{\circ} \\
& 2 \cos \left(\frac{40^{\circ}+100^{\circ}}{2}\right) \sin \left(\frac{40^{\circ}-100^{\circ}}{2}\right)
\end{aligned}
$$

False $2 \cos 70^{\circ} \sin \left(-30^{\circ}\right)$
$\Theta 2 \cos 70^{\circ} \sin 30^{\circ}$

$$
\begin{aligned}
& \cos 4 x \sin 12 x=\frac{1}{2} \sin 16 x+\frac{1}{2} \sin 8 x \\
& \frac{1}{2}[\sin (4 x+12 x)-\sin (4 x-12 x)] \\
& \text { True } \frac{1}{2}[\sin (6 x+\sin (+8 x)] \\
& \quad \frac{1}{2} \sin (16 x)+\frac{1}{2} \sin (8 x)
\end{aligned}
$$

1) Write 8 fundamantal identities.

1-10) True/False

* Be sure to chack t/ on hatf angle Identitios

11-14) Evaluate: Answar is a \#.

$$
\begin{align*}
\frac{1-\cos 450^{\circ}}{\sin 450^{\circ}}=\tan \left(\frac{450^{\circ}}{2}\right) & =\tan 225^{\circ} \tag{1}\\
& =+1
\end{align*}
$$

15-20 - Draw pictura + fill in rchuea
Find $\sin (A-B)$ if $\csc A=-\frac{5}{3} \frac{r}{4} \cdot \cot B=\frac{12}{5} \frac{x}{y}$

$$
\frac{3 \pi}{2}<A<2 \pi \quad \pi<B<\frac{3 \pi}{2} .
$$

$$
\frac{y}{r} \frac{x}{r}
$$

$\sin (A-B)=\frac{r}{\sin A \cos B-\cos A \sin B}$

$$
\begin{aligned}
& \left(-\frac{3}{5}\right)\left(-\frac{12}{13}\right)-\left(\frac{4}{5}\right)\left(-\frac{5}{13}\right) \\
& \frac{36}{65}+\frac{20}{65}=\frac{56}{65}
\end{aligned}
$$

Verify - 4 problems

$$
\text { (1 easy, } 2 \text { med, (challenge) }
$$

Hint: *3 1-Use Sum + product identities.

