FLUID Force
Fluid - substance conforms to its container

$$
V_{01} \cdot p
$$

$$
\begin{aligned}
F & =\rho \cdot h \cdot A \\
F & =62.4 \frac{\mathrm{lb}}{\mathrm{ft}} \cdot \mathrm{w} \\
& =5054.4 \mathrm{lb} .
\end{aligned}
$$



$$
\begin{aligned}
& \text { Pressure }=\frac{F}{A}=\frac{5054.4}{2.3} \\
&=842.4 \frac{\mathrm{lb}}{\mathrm{Ft}^{2}} \\
& 842.4 \cdot \frac{\mathrm{~b}}{\mathrm{f}^{2}} \frac{1 \mathrm{Kt}}{1441 \mathrm{~m}^{2}} \\
&=5.85 \mathrm{psi}
\end{aligned}
$$

Pascal's Principle - pressure is the same at any depth regardless of the poshiom of the object


$$
\begin{aligned}
& F=\rho h A \\
& \int_{a}^{b} \rho h(x) \ell(x) \cdot d x \\
& \int_{0}^{3} 62.4(x+5) \cdot 8 d x \\
& =9734.4 \mathrm{lb} .
\end{aligned}
$$




$$
\int_{a}^{b} \rho \cdot h(x) \cdot l(x) d x
$$

$$
\begin{aligned}
x^{2}+y^{2} & =r^{2} \quad \int_{0}^{4} 9810 \cdot x \cdot 2 \sqrt{16-x^{2}} d x \\
x^{2}+y^{2} & =4^{2} \\
\sqrt{y^{2}} & =\sqrt{16-x^{2}} \\
y & = \pm \sqrt{16-x^{2}}
\end{aligned}
$$



Hyperbolic Functions

- Combinations of $e^{x}+e^{-x}$
- properties of trig functions
- connected through complex numbers

$$
\sinh x=\frac{e^{x}-e^{-x}}{2} \cosh x=\frac{e^{x}+e^{-x}}{2}
$$



Catenary $y=a \cosh \left(\frac{x}{a}\right)+c$

$$
\begin{aligned}
\sinh (\ln 3) & =\frac{e^{\ln 3}-e^{* \ln 3^{-1}}}{2} \\
& =\frac{3-\frac{1}{3}=\frac{8}{3} \cdot \frac{1}{2}=\frac{4}{3}}{2}
\end{aligned}
$$

Derivatives

$$
\begin{aligned}
& \frac{\text { Derivatives }}{\frac{d}{d x} \sinh x=\cosh x \quad * \frac{d}{d x} \cosh x=\sinh x} \\
& \frac{d}{d x} \tanh x=\operatorname{sech}^{2} x \quad \frac{d}{d x} \operatorname{coth} x=-\operatorname{csch}^{2} x \\
& * \frac{d}{d x} \operatorname{sech} x=-\operatorname{sech} x \tanh x \quad \frac{d}{d x} \operatorname{csch} x=-\operatorname{csch} x \operatorname{coth} x \\
& \cosh ^{2} x-\sinh ^{2} x=1 \\
& f(x)=\operatorname{coth} x \cdot e^{\operatorname{csch} x^{3}} \quad \text { Find } f^{\prime}(x) \\
& f^{\prime}(x)=\underbrace{\cos x^{3}}_{+e^{\operatorname{coth} x} x} \cdot-\operatorname{csch}^{e^{\operatorname{sch}} x^{3}} \cdot-\operatorname{csch} x^{3} \operatorname{coth} x^{3} \cdot 3 x^{2}
\end{aligned}
$$

$$
\begin{array}{ll}
\int \sinh ^{7} x \cosh x d x & \left.\begin{array}{l}
u=\sinh x \\
d u
\end{array}\right)=\cosh x d x \\
\int u^{7} \cdot \cosh x \cdot \frac{d u}{\cosh x} & \frac{d u}{\cosh x}=d x \\
=\frac{u^{8}}{8}+C & \\
=\frac{\sinh ^{8} x+C}{8} &
\end{array}
$$

