Treasures of Variation

- measure the "spread" of the data
- Range - Higher value-Lowest Valve
$\frac{\mathrm{Bl} 3}{74-101} \quad \frac{\mathrm{Bl} 4}{56-78}$
$R_{\text {arg }}=101-74 \quad 9678-56$

$$
=27=22
$$

*Standard Deviation - the "average" of how much each piece of data varies front the mean

$$
\begin{aligned}
& \{6,8,9,11,12,28,34,36\} \\
& \bar{x}=\frac{144}{8}=18
\end{aligned}
$$

1) Find mean
2) Data -mean
3) Square the differences
$6-18818$

$$
\begin{aligned}
& 6-18818 \\
& \left.(-12)^{2}+(-1)^{2}+(-9)^{2}+(-1)^{2}+(-6)^{2}+(10)^{2}(16)^{2}\right)(18)^{2}
\end{aligned}
$$

Calculator: $12^{2}+10^{2}+9^{2}+\cdots=1090$

$$
\frac{1090}{8}=\sqrt{136.25} \approx 11.67
$$

4) Find the mean of the squared
5) Square's squat e of mom
$\frac{\text { Sample }}{\bar{x}}$ calculapulation
Mean
St. deviation S

Measures of variation
(3) IQR + Box * Whisker Plots

Interquartice Range $=Q_{3}-Q_{1}$

Outliers
1)

$$
\begin{aligned}
& I Q R * 1.5=\# \\
& 26 * 1.5=39
\end{aligned}
$$

Out lien boondargs
2) Upper boundary

$$
\begin{aligned}
& \left.Q_{3}+\#=\right)^{y} \\
& 17 a+39=211
\end{aligned}
$$

3) Lower boundary Q_{1} - \#

$$
146-39=107
$$

$\frac{\text { Outliers }}{219}$

