Probability

$$
\begin{aligned}
& \operatorname{Prob}(\text { female })=\frac{8}{14}=\frac{4}{7} \\
& \operatorname{Prob}(\text { not hit hers } \text { shes })=\frac{7}{14}=\frac{1}{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Probability }=\frac{\text { ways to succeed }}{\text { total possible oat comas }} \\
& O d d s=\frac{\text { waysto succeed }}{\text { Ways to fails }} \\
& \text { Prob (snow) }=\frac{2}{9} \text { sue total } \quad \text { Prob(good lunch) }=\frac{2}{55} \text { good } \quad \text { tote } \\
& O d d s(\text { snow })=\frac{2}{7} \frac{\text { sue }}{\text { fail }} \quad \text { Odds (tad lunch) }=\frac{53}{2}
\end{aligned}
$$

Theoretical probability--the probability that should occur based on rules or formulas

Experimental probability--Estimating the probability of an event by performing the activity many times and using the results to estimate the probability

Sample Space--all possible outcomes from an event
Given: 2 coins (Nickel \& Quarter) and 3 marbles (2 purple, 1 blue)
Select 1 coin and 2 marbles. List the sample space.

What is the probability of selecting a nickel and one purple marble?

$$
\frac{2}{6}=\frac{1}{3} \quad \text { Prob(blue) }-\frac{4}{6}=\frac{2}{3}
$$

Geometric Probability--Estimating the probability using the area of a figure

$$
\begin{aligned}
& \text { Total }=l \cdot w=4.8=32 \\
& A=\pi r^{2}=\pi \cdot 2^{2}=4 \pi \\
& 2 \text { crises }=8 \pi \\
& \text { PinK }=32-8 \pi
\end{aligned}
$$

Prob (fly lands on pink)
$=\frac{\text { Area of pink }}{\text { Total Ares }}$

$$
=\frac{32-8 \pi}{32}
$$

$$
\approx 0.215
$$

The Easter bunny brings you an Easter basket filled with 6 peanut butter eggs, 4 caramel eggs, and 2 solid chocolate eggs. Your mother will only allow you to have 3 eggs at a time.

$$
\begin{array}{ll}
1,2,3 & 234 \\
124 &
\end{array}
$$

What is the probability that you select 3 peanut butter eggs?

$$
\begin{aligned}
& \text { Prob (3 peanut butter) }=\frac{\text { ways to get } 3 p \cdot b}{\text { total ways to }} \begin{array}{c}
\text { pick } 3 \text { eggs }
\end{array}=\frac{{ }_{6} C_{3}}{{ }_{12} C_{3}}= \\
& \text { What are throdds hat you select } 3 \text { peanut butter eggs? sue } \approx 0.0909=\frac{1}{11}
\end{aligned}
$$

$$
\begin{aligned}
& O d d s(3 \text { po. })=\frac{3 \text { pub. }}{30, \text { ch, 2pbilch }} \\
& \text { Find Prob first'. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Prob }=\frac{1}{11} \frac{\text { sue }}{\text { toted }} \\
& o d d s=\frac{\text { sues }}{f_{\text {ail }}}=\frac{1}{10}
\end{aligned}
$$

What is the probability that you select 2 caramel eggs and 1 chocolate egg?

$$
\frac{{ }_{4} C_{2} \cdot{ }_{2} C_{1}}{{ }_{12} C_{3}}=\frac{3}{55} \quad O d d 5=\frac{3}{52}
$$

If 5 eggs are selected, what is the probability of selecting 3 caramel eggs?

$$
\begin{aligned}
\operatorname{Prob}\left(3 \text { caramel + } 2 \text { other) }=\frac{{ }_{1} C_{3} \cdot{ }_{8} C_{2}}{{ }_{12} C_{5}}\right. & =\frac{14}{99} \\
& \approx 0.141
\end{aligned}
$$

