More Probability

Combinations
All must be true

* No replace mont
* No order
* Dependent events the and event depends or the result of the first events

Individual Probabilities
If Any are true:

* Replacement
* Order
* Independent events the and event is not influenced by the outcome of the lost event (chances to not change) Rolling dice Flipping cons

Mutually Inclusive/Exclusive Events

$$
\text { Deck of cards - Draw I card } O R=A D D
$$

Prob (ace or black card)

$$
\frac{4}{52}+\frac{26}{52}-\frac{2}{52}=\frac{28}{52}=\frac{7}{13}
$$

only Mutually Inclusive Events - Share common items
problem" Mutually Exclusive Events - share No common items. Prob (ace or face card)
Draw 2 cards. Prob (fac earls or

$$
\frac{{ }_{12} C_{2}+{ }_{26} C_{2}-{ }_{6} C_{2}}{{ }_{52} C_{2}}
$$

$$
\text { Prob }=\frac{188}{663} \frac{\text { sue }}{\text { total }}
$$

ODDS $=\frac{188}{475} \frac{\text { sue }}{\text { fail }}$

Select 2 people to earn extra Homework Coupon.
$02 d s$ (2 juniors or 2 females)

$$
\frac{{ }^{2} C_{2}+{ }_{10} C_{2}-{ }_{2} C_{2}}{{ }_{16} C_{2}}=\frac{5}{12} \frac{0 d{ }^{2}}{\frac{5}{7}}
$$

Pick 5 students.
Prob (at least 3 males)
$3 \mathrm{M}+2 \mathrm{~F}$ OR $4 \mathrm{M}+1 F$ OR 5 M
At least

$$
\begin{aligned}
& \frac{{ }_{6} C_{3} \cdot{ }_{10} C_{2}+{ }_{6} C_{4} \cdot{ }_{10} C_{1}+{ }_{6} C_{5}}{{ }_{16} C_{5}} \\
& =\frac{22}{91}
\end{aligned}
$$

