$$
\begin{gathered}
\text { TECANL QUES OF INTEGPAT } \\
\hline \text { Integration by Parts } \\
\left.\int(f \cdot g)^{\prime}=\int(f \cdot g)+\int f \cdot f^{\prime}\right) \\
f g=\int f \cdot g^{\prime}+\int g \cdot f^{\prime} \\
f f \cdot g^{\prime} d x \\
f g-\int g \cdot f^{\prime}=\int f \cdot g^{\prime} \\
u r=\int v \cdot d u=\int u \cdot d v \\
\int_{u} \cdot d v=u v-\int v d u
\end{gathered}
$$

$$
\begin{aligned}
& \int u d v=u v-\int v d u \\
& \int x \sec ^{2} x d x \quad u=x-\quad d r=\sec ^{2} x d x \\
= & x \tan x-\int \tan x d x \\
= & x \tan x-\int \frac{\sin x}{\cos x} d x \quad \begin{array}{l}
u=\cos x \\
=
\end{array} \quad x \tan x=-\sin x d x \\
= & x \tan x+\int \frac{\sin x}{u} \cdot \frac{d u}{u} d u \\
= & x \tan x+\ln |u|+C \\
= & x \tan x+\ln |\cos x|+C
\end{aligned}
$$

$$
\int \ln x d x \quad \begin{array}{ll}
u=\ln x-\int d v=\int d x \\
d u & =\frac{1}{x} d x \quad v=x
\end{array}
$$

\square

$$
=x \ln x-\int x \cdot \frac{1}{x} d x
$$

$$
=\sqrt{x \ln x-x+C}
$$

$$
\begin{aligned}
& \int x^{2} \cdot e^{2 x} d x \quad u=x^{2} \quad d r= \\
& d u=2 x d x \quad v=\frac{1}{2} \\
&= \frac{1}{2} x^{2} e^{2 x}-\int x e^{2 x} d x \quad u=x \quad d \\
&= \frac{1}{2} x^{2} e^{2 x}+\left[-\frac{1}{2} x e^{2 x}+\int \frac{1}{2} e^{2 x} d x\right] \\
&= \frac{1}{2} x^{2} e^{2 x}-\frac{1}{2} x e^{2 x}+\frac{1}{4} e^{2 x}+C
\end{aligned}
$$

$$
\left.\begin{array}{c}
\int e^{x} \cos x d x \quad \begin{array}{l}
u=e^{x} \\
d u=e^{x} d x
\end{array} \begin{array}{l}
d v=\cos x d x \\
v=\sin 1
\end{array} \\
\int e^{x} \cos x d x=e^{x} \sin x-\int e^{x} \sin x d x d u=e^{x} d v=\sin x \\
u=-\cos x \\
d x
\end{array}\right] \begin{aligned}
& \int e^{x} \cos x d x=e^{x} \sin x+\sqrt{+}+e^{x} \cos x d x \mp+e^{x} \cos x d x \\
& \frac{2 \int e^{x} \cos x d x}{2}=\frac{e^{x} \sin x+e^{x} \cos x}{2}+C
\end{aligned}
$$

