May 6, 2024
 coordinate for c-value each time you want to color a different point.

$$
f(x)=x^{2}+C
$$

$f(l$

Key Charactensy, self-similar

Calculator:

1) $x^{2}+(1+i) \mid x=0$
2) $x^{2}+(1+i) \mid x=A n s$

$$
\begin{aligned}
& f(x)=x^{2}+4+2 i \\
& f(0)=0^{2}+4+2 i=4+2 i
\end{aligned}
$$

$$
f(1+i i)=(1+2 i)^{2}+4+2 i
$$

$$
=16+16 i+4\left(x^{2}+y+2 i\right.
$$

$$
=16+18 i
$$

$$
\begin{aligned}
f(16+18 i) & =(16+8 i)^{2}+4+2 i \\
& =256+256 i+6 x^{2}+4+2 i \\
& =196+258 i
\end{aligned}
$$

Orbit: $4+2 i, 16+8 i, 196+258 i$

Fibonacci Sequence

$$
1,1,2,3,5,8,13, \ldots
$$

- find largest bulb between the 2 previous bulbs.

- Cardiac arhythmias heathy hearts are chaotic

Julia Se s

Mandelbrot
Julia

More Derivatives

Product Rule

$$
\begin{aligned}
& \frac{d}{d x} f \cdot g=f \cdot g^{\prime}+g \cdot f^{\prime} \\
& \left.\right|_{s t} \cdot d^{\prime 2 n d}+2 n d \cdot d^{\prime} \mid s^{\prime} \\
& \begin{array}{c}
f(x)=\left(7 x^{5}+3 x^{8}-2\right)\binom{\left.8 x-\frac{1}{\sqrt[3]{x^{2}}}+9\right)}{-7 x^{2 / 5}}
\end{array}
\end{aligned}
$$

Chain Rule

$$
\begin{aligned}
& \frac{d}{d x} f[g(h(x))]=f^{\prime}[g(h(x))] \cdot g^{\prime}(h(x)) \cdot h^{\prime}(x) \\
& f(x)=\left(x^{2}-7 x+3\right)^{8} \quad f(x)=\sin ^{4}\left(\cos \left(3 x^{2}-2\right)^{5}\right) \\
& f^{\prime}(x)=8\left(x^{2}-7 x+3\right)^{7} \cdot(2 x-7) \\
& f(x)=\sqrt{x^{2}+3-5\left(x^{2}+4\right)^{9}} \\
& -=\left[\left(x^{2}+3-5\left(x^{2}+1\right)^{9}\right]^{1 / 2}\right. \\
& f^{\prime}(x)=\frac{1}{2}\left[x^{2}+3-5\left(x^{2}+4\right)^{9}\right]^{-1 / 2} \cdot\left[2 x-45\left(x^{2}+4\right)^{8} \cdot 2 x\right]
\end{aligned}
$$

$$
\begin{aligned}
f(x) & =\frac{\left(x^{5}-4 x^{8}+7\right)\left(3 x^{2}-5 x^{7}\right)}{\left(x^{6}+8\right)^{100}} \\
f^{\prime}(x) & =\frac{\left(x^{6}+8\right)^{100} \cdot\left[\left(x^{5}-4 x^{8}+7\right)\left(6 x-85 x^{6}\right)+\left(3 x^{2}-5 x^{7}\right) \cdot\left(5 x^{4}-32 x^{7}\right)\right.}{} \\
& =\frac{\left(x^{5}-4 x^{8}+1\right)\left(3 x^{2}-5 x^{7}\right) \cdot 100\left(x^{6}+8\right)^{99} \cdot\left(6 x^{5}\right)}{\left[\left(x^{6}+8\right)^{100}\right]^{2}}
\end{aligned}
$$

