

Friday, Aug. 30

Finding Limits from Graphs Handout p. 111 1-6 p. 131 1-4

Sec. 2.2 pp. 65-68 11, 16, 28-31

Sec. 2.3 pp. 76-77 28, 29, 41, 42, 43, 45, 47, 51, 52

Wednesday, Sept. 4

Sec. 2.4 pp. 85-87 9, 11, 19, 21, 22b, 23a, 25, 27

Limits at Infinity Handout 15, 19, 20, 23, 26, 27 & problems at right

a)
$$\lim_{x \to -\infty} \frac{\sqrt{36x^6 - 3x^3 + 2}}{4 - 3x^3 + 2x^2}$$
 b) $\lim_{x \to -\infty} (5 + 2x^2 - 3x^3)$
c) $\lim_{x \to -\infty} \frac{\sqrt[4]{2 - x^2 + 16x^4}}{1 - 8x}$ d) $\lim_{x \to \infty} (6x^2 - 5x^5 + 2)$

c)
$$\lim_{x \to -\infty} \frac{\sqrt[4]{2 - x^2 + 16x^4}}{1 - 8x}$$
 d) $\lim_{x \to \infty} (6x^2 - 5x^5 + 2)$

Friday, Sept. 6

Introduction to Limits of Special Functions

Limit Worksheet

Tuesday, Sept. 10

Asymptotes Handout

Continuity Handout

Math Matters Due

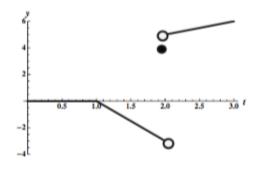
Thursday, Sept. 12

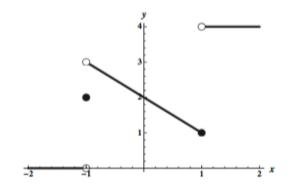
Calculating limits with CAS

Journal Due

Brief look at epsilon-delta definition of limits

Review Limits


Monday, Sept. 16


ANSWERS

Sec. 2.2 pp. 65-68
16. Limit appears to be 2.

28. Many possible graphs

30. Many possible graphs

Sec. 2.3 pp. 76-77

28. -1

42. -5

52. 3a²

Limits at Infinity

- a) 2
- b) $\frac{1}{4}$
- c) +∞
- d) -∞