APPL. OF INTEGRATION REVIEW

particular - Solve for C #1-6) By hand #7-16) (as hand #7-16) (as By hand #17-25) By hand
$$U = (6x-2)$$

$$du = (6x-2)$$

$$du$$

Have = 50 yds behind turtle
$$accel. = at 3 ft/s^2$$
 $a(t) = s'(t)$ $a(t) = s'(t)$

Turtle = not accel.

0.5 ft/sec

10 fl. to finish

Have

Turtle

 $a(t) = v'(t) = s''(t)$
 $a(t) = v'(t) = s''(t)$

F(x) =
$$Kx$$
 | Write $\frac{d}{dx}$ hyperbolic functions

Out of the first $\frac{d}{dx}$ hyperbolic functions

 $\frac{d}{dx} = \frac{d}{dx} = \frac{d}{$

