

Wed., Sept. 17

Sec. 3.1 p 133 (Do parts a & b of each problem.)

1st Definition: 10, 30, 31

2nd Definition: 16, 20, a, b on back

Handout: Match the graphs with the graph

of their derivatives (Hint: Think about the slope of the original graph.)

Sec. 3.3 p 151

Power Rule: 19, 23, 24, 45, c, d, e

Trig functions: f, g, h

Mon., Sept. 22

Product, Quotient, Chain Rule (problems on back)

Wednesday, Sept. 24

More Chain Rule (problems on back)

Differentials (problems on back)

Friday, Sept. 26

Differentiability Handout (Optional Homework (extra credit), but will be tested)

Review Derivatives

Journal Due

Tuesday, Oct. 1

Derivatives Test

Day 1 Assignment

(a)
$$f(x) = 4\cos x$$

(b)
$$f(x) = 2\sin x$$

(c)
$$f(x) = \frac{2}{x^2} + 3\sqrt{x}$$

(d)
$$f(x) = (2x^2 + 3)(x^3 - 5)$$

(e)
$$f(x) = \frac{4}{3x^5} - 6\sqrt[3]{x^2}$$

(f)
$$f(x) = \tan x + \csc x$$

(g)
$$f(x) = 4\sin x - 3\cot x + 2$$

(h)
$$f(x) = \sin x (2\csc x - \cot x)$$

Hint: Trig identities might be useful.

Day 2 Assignment (Product, Quotient & Chain Rules)

Find f'(x) using the product, quotient or chain rules

1.
$$f(x) = (x^3 + 7x^2 - 8)(2x^{-3} + x^{-4})$$

2.
$$f(x) = \left(\frac{1}{x} + \frac{1}{x^2}\right) \left(3x^3 + 27\right)$$

3.
$$f(x) = \frac{4x+1}{x^2-5}$$

4.
$$f(x) = \left(\frac{3x+2}{x}\right)(x^{-5}+1)$$

$$5. \ f(x) = \frac{\sin x}{x^2 + \sin x}$$

6.
$$f(x) = (x^2 + 1)\sec x$$

$$7. \ f(x) = \frac{\cot x}{1 + \csc x}$$

8.
$$f(x) = \sec x \tan x$$

9.
$$f(x) = \frac{\sin x \sec x}{1 + x \tan x}$$

10.
$$f(x) = \frac{(x^2+1)\cot x}{3-\cos x \csc x}$$

11.
$$f(x) = (x^3 + 2x)^{37}$$
.

12.
$$f(x) = \frac{4}{(3x^2 - 2x + 1)^3}$$

(Quotient rule is not the easiest way.)

13.
$$f(x) = \sqrt{4 + \sqrt{3x}}$$

14. Find
$$f''(x)$$
.

$$f(x) = x^2 \cos x + 4 \sin x$$

Find $\frac{dy}{dx}$.

15.
$$y = (5x+8)^7 (1-\sqrt{x})^6$$

16.
$$y = \left(\frac{x-5}{2x+1}\right)^3$$

17.
$$y = \frac{(2x+3)^3}{(4x^2-1)^8}$$

Write the equation of the line tangent to the given function at the given value of *x*.

18.
$$y = \left(x - \frac{1}{x}\right)^3$$
, $x = 2$

19.
$$y = x^2 \sqrt{5 - x^2}$$
, $x = 1$

Day 3 Assignment (More Chain Rule)

Find f'(x)

$$1. \quad f(x) = \sin\left(\frac{1}{x^2}\right)$$

$$2. \quad f(x) = \tan^4(x^3)$$

3.
$$f(x) = \sqrt{3x - \sin^2(4x)}$$

4.
$$f(x) = \left[x + \csc(x^3 + 3)\right]^{-3}$$

Find $\frac{dy}{dx}$.

$$5. \quad y = x^5 \sec\left(\frac{1}{x}\right)$$

6.
$$y = \frac{\sin(x^6)}{\sec(3x^2 + 5x^4)^8}$$

7.
$$y = \sin(\tan 3x)^7$$

8.
$$y = \cos^3(\sin 2x)$$

9.
$$y = [x + \sin^3(x^5)]^{12}$$

$$10. y = \left[\frac{x \sin 2x}{\tan^4(x^7)}\right]^5$$

11. Solve with CAS:

$$y = \tan^4 \left[2 + \frac{(7-x)\sqrt{3x^2 + 5}}{x^3 + \sin x} \right]$$

Write the equation of the line tangent to the given function at the given value of *x*.

12.
$$y = x \cos 3x$$
, $x = \pi$

13.
$$y = \tan(4x^2)$$
, $x = \sqrt{\pi}$

Differentials

- 1. Find dy if $y = \sqrt{3x 2}$ and x changes from 2 to 2.03.
- 2. Find dA if $A = 3x^2 x$ and x changes from 4 to 4.1.
- 3. The radius of a round manhole cover is estimated to be 16 in., with a maximum error of ± 0.06 in. (a) Use differentials to estimate the maximum error in the area to the nearest hundredth. (b) Approximate the percentage error in the radius and the area to the nearest thousandth of a percent.
- 4. A spherical balloon is being inflated with gas. (a) Use differentials to approximate the increase in the volume if the diameter changes from 2 ft. to 2.02 ft. to the nearest hundredth. (b) Approximate the percentage error in the radius and the volume to the nearest percent.
- 5. A metal cube with sides of 15 in. is coated with a sealant 0.01 in thick. Approximate the change in the surface area to the nearest tenth.
- 6. A metal rod 18 cm long and 5 cm in diameter lies at the bottom of the ocean. It gradually develops a layer of corrosion 0.1 cm thick along its surface. Approximate the change in the volume to the nearest hundredth.