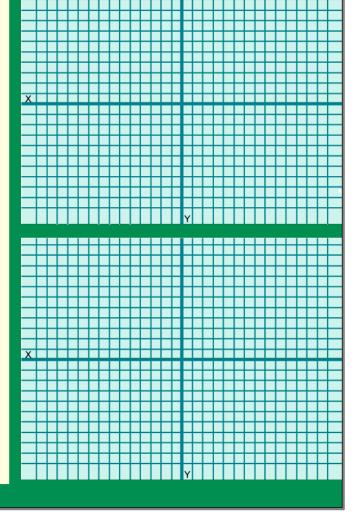
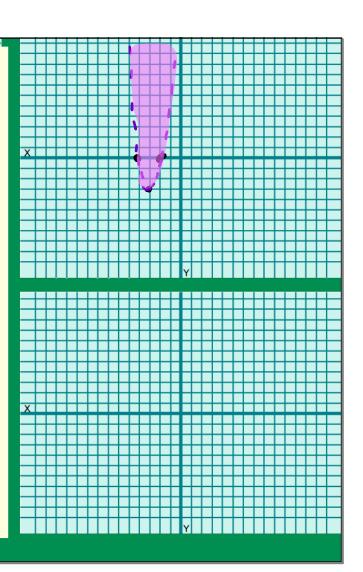

		M
ORMS	OF	QUADRATICS


FORMS OF GUADRATICS				
Vertex Form	Standard Form	Intercept Form		
$y=a(x-h)^2+K$	$y=ax^2+bx+c$	y = a(x-p)(x-g)		
Vertex: (h, K) Line of $x = h$ Symn:	Vertex: X = -b/2a Y = Sobin X - coord	Vertex: $X = P + Q$ Y = Sub in		
Direction: + a up	broad -X	y=sub in x-comb.		
Math: Namas a > 1				
normal a =1				
mide. Ocla/<1				

$$\begin{aligned}
& (y = a(x-h)^2 + K) \\
& (y = 5(x-3)^2 + 1) & (y = tx) \cdot (3 + 1) \\
& (y = 5(x-3)(x-3) + 1) & (y = \frac{30}{2} - \frac{(-30)}{2 \cdot (5)} = 3) \\
& (y = 5(x^2 - 3x - 3x + 9) + 1) & (x = \frac{-b}{2a}) \\
& = 5(x^2 - 3x + 45 + 1) & (y = 5x^2 - 30x + 45 + 1) \\
& (y = 5x^2 - 30x + 45 + 1) & (y = 5x^2 - 30x + 45 + 1) \\
& (y = 5(3)^2 - 30(3) + 16) \\
& = 45 - 90 + 46
\end{aligned}$$

Intercept Form y = a(x-p)(x-g) y = a(x-p)(x-g) $x - p = 0 \quad x - g = 0$ $x = p \quad x = g$ $x = p \quad x = g$ x = p + g y = sub in x - cond.

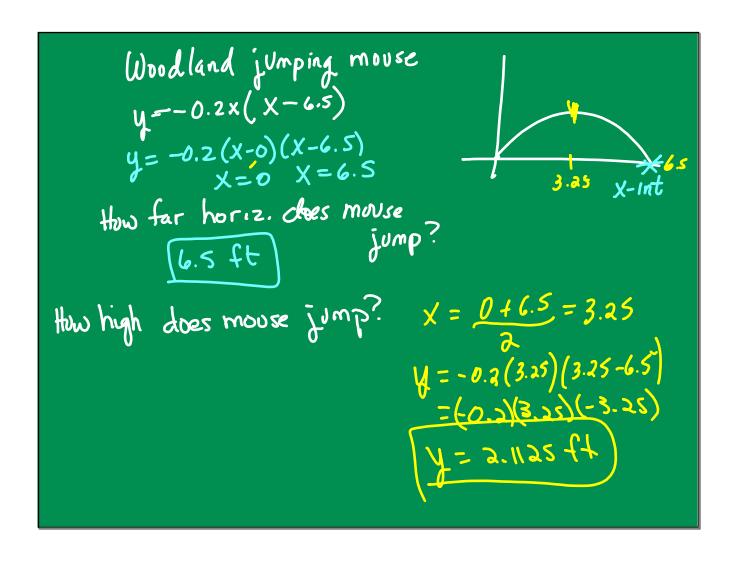

$$y = 3(x+2)(x+4)$$

Find $x-inf$:

 $x+d=0$ $x+4=0$
 $x=-2$ $x=-4$

Vertex: $x=-\frac{\lambda}{a}$
 $x=-3$
 $x=-3$

Vertex: $(-3,-3)$


1972, Mercury Cornet = \$3200

$$V(t) = 18.75t^{2} + 480t + 3200$$
When Lid it reach its lowest value?

$$t = x = -\frac{b}{aa} = \frac{1}{2(18.75)} = 12 \qquad \frac{1972}{1787}$$
What was its lowest value?

$$Value = y = 18.75(12)^{2} + 450(12) + 3200$$

$$= 500$$

