a = - 9.8 m/52 MOTION - PART 2- VERTICAL V= -32 ft/s V=0 $h(t) = \frac{1}{2}at^{2} + V_{i}t + S_{0}$ h(t) = -4.9t2 + 50t + 3 50 m/s V(t)=-9.8t + 50 a(t) = -9.8How high will the tiger go? 0 = -9.8++So 984=50 t = 5.102 Sec h(5.102) = -4.9(5.102) 7 50(5.102) + 3 = 130.55 m When will he be 67m above the ground? 67 = - 49t2 + sot + 3 0 = -4.9t2 4 Sot-64 t= -50 + 502- 4(-4.9)(-64) t = 1.5 sac 8.7 sec the fast is be moving at 67 m? V(1.5)=-9.8(1.5)+50=35.3 m/s V(8.7) = -9.8(8.7) + 50 = -35.3 m/s

MENTON'S METHOD
$$f(x) = x^{2} 3x - 1$$

$$y - f(x_{n}) = f'(x_{n})(x - x_{n})$$

$$0 - f(x_{n}) = f'(x_{n})(x - x_{n})$$

$$\frac{1}{y} = \frac{1}{x}$$

$$y = 4 - x^{2}$$

$$\frac{1}{x} = 4 - x^{2}$$

$$\frac{1}{x} = 4 - x^{2}$$

$$0 = 4 - x^{2} - \frac{1}{x}$$

$$\frac{1}{x} = \frac{1}{x}$$

$$x = x - \frac{x^{3} + x - 1}{3x^{2} + 1}$$

$$x = x - \frac{x^{3} + x - 1}{3x^{2} + 1}$$

$$x = x - \frac{x^{3} + x - 1}{3x^{2} + 1}$$

$$x = x - \frac{x^{3} + x - 1}{3x^{2} + 1}$$

$$x = x - \frac{x^{3} + x - 1}{3x^{2} + 1}$$